Резник Елена Владимировна
Особенности поражения органов-мишеней у больных с хронической сердечной недостаточностью

14.01.04 - внутренние болезни
14.01.05 – кардиология

ДИССЕРТАЦИЯ
на соискание ученой степени доктора медицинских наук

Научные консультанты:
Сторожаков Геннадий Иванович,
академик РАН, профессор,
dоктор медицинских наук

Гендлин Геннадий Ефимович,
профессор,
dоктор медицинских наук

Москва, 2016
ОГЛАВЛЕНИЕ

СПИСОК СОКРАЩЕНИЙ .. 4

ВВЕДЕНИЕ .. 8
Актуальность темы ... 8
Цель исследования ... 11
Задачи исследования .. 11
Научная новизна работы .. 12
Практическая значимость работы .. 14
Внедрение .. 15
Публикации ... 15
Апробация диссертации ... 15
Объем и структура работы .. 18

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ ... 19
Почки как орган-мишень при ХСН, кардиоренальный синдром 19
Минеральные и костные нарушения при ХСН ... 70
Печень как орган-мишень при ХСН: кардиогепатический синдром 142
Бронхиолегочный аппарат при ХСН: кардиореспираторный синдром 151
Метаболический синдром при ХСН: кардиометаболический синдром 155
Генетические предикторы СН и поражения органов-мишеней при этом заболевании ... 156
Эпигенетика СН .. 188

ГЛАВА 2. ХАРАКТЕРИСТИКА БОЛЬНЫХ И МЕТОДЫ ИССЛЕДОВАНИЯ 195
Характеристика больных, включенных в исследование ... 195
Методы исследования ... 204
Комплексное лабораторное обследование .. 204
Эхокардиографическое исследование ... 215
Холтеровское мониторирование ЭКГ ... 218
Суточное мониторирование АД .. 219
Ультразвуковое исследование печени .. 219
Оценка почечной гемодинамики ... 219
Оценка субъективной выраженности клинической симптоматики ХСН 222
Оценка качества жизни .. 223
Оценка объективной выраженности клинической симптоматики 224
Исследование анамnestических данных .. 225
Тредмил-тест ... 231
6-минутный тест ... 233
Комплексное функциональное исследование внешнего дыхания 233
Двухэнергетическая рентгеновская денситометрия ... 235
Ультразвуковое исследование печени .. 235
Генетический анализ ... 235
Коррекция терапии, контроль за приверженностью к терапии, оценка ее влияния на
органы-мишени и лечение остеопороза у больных с ХСН .. 236
Статистическая обработка результатов ... 237

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ .. 240
Сравнительная характеристика структурно-функционального состояния сердечно-
сосудистой системы у больных с ХСН со сниженной и сохраненной фракцией выброса
левого желудочка .. 240
Поражение почек как органа-мишени .. 247
Нарушения минерального и костного обмена при ХСН ... 285
Печень как орган-мишень при ХСН .. 298
Бронхиолегочный аппарат у больных с ХСН ... 302
Предикторы и механизмы поражения органов-мишеней ... 305
Поражение органов-мишеней и лекарственная терапия ХСН 316
Влияние поражения органов-мишеней на прогноз у больных с ХСН 319

ГЛАВА 4. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И ЗАКЛЮЧЕНИЕ 328
Структурно-функциональное состояние сердечно-сосудистой системы у больных с ХСН .. 328
Поражение почек при ХСН ... 329
Минерально-костные нарушения ... 351
Печень как орган-мишень при ХСН ... 364
Бронхолегочный аппарат как орган-мишень при ХСН 366
Механизмы поражения органов-мишеней 368
Влияние поражения органов-мишеней на выживаемость больных с ХСН 374
Заключение: 384
ВЫВОДЫ 386
ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ .. 388
Клинические примеры ... 400
БЛАГОДАРНОСТЬ 425
СПИСОК ЛИТЕРАТУРЫ... 425
СПИСОК СОКРАЩЕНИЙ

Сокращения на русском языке

<table>
<thead>
<tr>
<th>Сокращение</th>
<th>Полное обозначение</th>
</tr>
</thead>
<tbody>
<tr>
<td>АГ</td>
<td>Артериальная гипертония</td>
</tr>
<tr>
<td>АД</td>
<td>Артериальное давление</td>
</tr>
<tr>
<td>АДГ</td>
<td>Антидиуретический гормон</td>
</tr>
<tr>
<td>АЛТ</td>
<td>Аланинаминотрансфераза</td>
</tr>
<tr>
<td>АСТ</td>
<td>Аспартатаминотрансфераза</td>
</tr>
<tr>
<td>АПФ</td>
<td>Ангиотензинпревращающий фермент</td>
</tr>
<tr>
<td>АРА II</td>
<td>Антагонист рецепторов ангиотензина II</td>
</tr>
<tr>
<td>АРК</td>
<td>Активные радикалы кислорода</td>
</tr>
<tr>
<td>АТФ</td>
<td>Аденозинтрифосфат</td>
</tr>
<tr>
<td>ВНОК</td>
<td>Всероссийское научное общество кардиологов</td>
</tr>
<tr>
<td>ГБ</td>
<td>Гипертоническая болезнь</td>
</tr>
<tr>
<td>ГГТП</td>
<td>Гаммаглутамилтрансаминаза</td>
</tr>
<tr>
<td>ГТФ</td>
<td>Гуанозинтрифосфат</td>
</tr>
<tr>
<td>ДАД</td>
<td>Диастолическое артериальное давление</td>
</tr>
<tr>
<td>ДИ</td>
<td>Доверительный интервал</td>
</tr>
<tr>
<td>ДНК</td>
<td>Дезоксирибонуклеиновая кислота</td>
</tr>
<tr>
<td>ДРГ</td>
<td>Двухэнергетическая рентгеновская абсорбциометрия</td>
</tr>
<tr>
<td>ДСПА</td>
<td>Дуплексное сканирование почечных артерий</td>
</tr>
<tr>
<td>ИБС</td>
<td>Ишемическая болезнь сердца</td>
</tr>
<tr>
<td>ИКЧ</td>
<td>Индекс курющего человека</td>
</tr>
<tr>
<td>ИЛ</td>
<td>Интерлейкин</td>
</tr>
<tr>
<td>ИМ</td>
<td>Инфаркт миокарда</td>
</tr>
<tr>
<td>ИММ</td>
<td>Индекс массы миокарда</td>
</tr>
<tr>
<td>ИМТ</td>
<td>Индекс массы тела</td>
</tr>
<tr>
<td>ИТДА</td>
<td>Иммунотурбулентный анализ</td>
</tr>
<tr>
<td>ИФА</td>
<td>Иммуноферментный анализ</td>
</tr>
<tr>
<td>КДО</td>
<td>Конечный диастолический объем</td>
</tr>
<tr>
<td>КГС</td>
<td>Кардиогепатический синдром</td>
</tr>
<tr>
<td>КМП</td>
<td>Кардиомиопатия</td>
</tr>
<tr>
<td>КРС</td>
<td>Кардиоренальный синдром</td>
</tr>
<tr>
<td>КМПК</td>
<td>кардиомиопатия</td>
</tr>
<tr>
<td>КСО</td>
<td>Конечный систолический объем</td>
</tr>
<tr>
<td>КТ</td>
<td>Коэффициент Тиффно</td>
</tr>
<tr>
<td>ЛДГ</td>
<td>Лактатдегидрогеназа</td>
</tr>
<tr>
<td>ЛЖ</td>
<td>Левый желудочек</td>
</tr>
<tr>
<td>ЛСК</td>
<td>Линейные скорости кровотока</td>
</tr>
<tr>
<td>МЖП</td>
<td>Межжелудочковая перегородка</td>
</tr>
<tr>
<td>МКН</td>
<td>Минеральные и костные нарушения</td>
</tr>
<tr>
<td>МРА</td>
<td>Антагонисты минералкортикоидных рецепторов</td>
</tr>
<tr>
<td>мНУП</td>
<td>Мозговой натрийуретический пептид</td>
</tr>
<tr>
<td>МПК</td>
<td>Минеральная плотность костной ткани</td>
</tr>
<tr>
<td>НОНЕР</td>
<td>Научное общество нефрологов России</td>
</tr>
<tr>
<td>Сокращение</td>
<td>Полное обозначение</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ОДСН</td>
<td>Острая декомпенсация сердечной недостаточности</td>
</tr>
<tr>
<td>ОКПП</td>
<td>Острое кардиогенное повреждение печени</td>
</tr>
<tr>
<td>ОНМК</td>
<td>Острое нарушение мозгового кровообращения</td>
</tr>
<tr>
<td>ОПН</td>
<td>Острая почечная недостаточность</td>
</tr>
<tr>
<td>ОСК</td>
<td>Объемные скорости кровотока</td>
</tr>
<tr>
<td>ОССН</td>
<td>Общество специалистов по сердечной недостаточности</td>
</tr>
<tr>
<td>ОЦК</td>
<td>Объем циркулирующей крови</td>
</tr>
<tr>
<td>ПА</td>
<td>Почечные артерии</td>
</tr>
<tr>
<td>ПАГ</td>
<td>Парааминогиппуровая кислота</td>
</tr>
<tr>
<td>пНУП</td>
<td>Предсердный натриуретический пептид</td>
</tr>
<tr>
<td>ПТГ</td>
<td>Паратиреоидный гормон</td>
</tr>
<tr>
<td>ПТИ</td>
<td>Протромбиновый индекс</td>
</tr>
<tr>
<td>РААС</td>
<td>Ренин-ангиотензин-альдостероновая система</td>
</tr>
<tr>
<td>РНК</td>
<td>Рибонуклеиновая кислота</td>
</tr>
<tr>
<td>РСКФ</td>
<td>Расчетная скорость клубочковой фильтрации</td>
</tr>
<tr>
<td>САД</td>
<td>Систолическое артериальное давление</td>
</tr>
<tr>
<td>САС</td>
<td>Симпатоаденаловая система</td>
</tr>
<tr>
<td>СД</td>
<td>Сахарный диабет</td>
</tr>
<tr>
<td>СДД</td>
<td>Суммарная доза диуретиков</td>
</tr>
<tr>
<td>СВ</td>
<td>Сердечный выброс</td>
</tr>
<tr>
<td>СИ</td>
<td>Сердечный индекс</td>
</tr>
<tr>
<td>СКФ</td>
<td>Скорость клубочковой фильтрации</td>
</tr>
<tr>
<td>СМАД</td>
<td>Суточное мониторирование артериального давления</td>
</tr>
<tr>
<td>СН</td>
<td>Сердечная недостаточность</td>
</tr>
<tr>
<td>ССЗ</td>
<td>Сердечно-сосудистые заболевания</td>
</tr>
<tr>
<td>СОЭ</td>
<td>Скорость оседания эритроцитов</td>
</tr>
<tr>
<td>ТЭЛА</td>
<td>Тромбэмболия легочной артерии</td>
</tr>
<tr>
<td>УЗ</td>
<td>Ультразвуковой</td>
</tr>
<tr>
<td>УЗИ</td>
<td>Ультразвуковое исследование</td>
</tr>
<tr>
<td>УИ</td>
<td>Ударный индекс</td>
</tr>
<tr>
<td>УПРЛЖ</td>
<td>Устройства, поддерживающие работу левого желудочка</td>
</tr>
<tr>
<td>ФВ</td>
<td>Фракция выброса</td>
</tr>
<tr>
<td>ФВД</td>
<td>Функция внешнего дыхания</td>
</tr>
<tr>
<td>ФЖЕЛ</td>
<td>Форсированная жизненная емкость легких</td>
</tr>
<tr>
<td>ФК</td>
<td>Функциональный класс</td>
</tr>
<tr>
<td>ФНО</td>
<td>Фактор некроза опухоли</td>
</tr>
<tr>
<td>ФП</td>
<td>Фибрилляция предсердий</td>
</tr>
<tr>
<td>ФСП</td>
<td>Фосфатсвязывающие препараты</td>
</tr>
<tr>
<td>ФФ</td>
<td>Фильтрационная фракция</td>
</tr>
<tr>
<td>ХБП</td>
<td>Хроническая болезнь почек</td>
</tr>
<tr>
<td>ХПН</td>
<td>Хроническая почечная недостаточность</td>
</tr>
<tr>
<td>ХСН</td>
<td>Хроническая сердечная недостаточность</td>
</tr>
<tr>
<td>ХСНнФВ</td>
<td>Хроническая сердечная недостаточность с низкой фракцией выброса левого желудочка</td>
</tr>
<tr>
<td>ХСНсФВ</td>
<td>Хроническая сердечная недостаточность с сохраненной</td>
</tr>
</tbody>
</table>
фракцией выброса левого желудочка

ЧСС Частота сердечных сокращений
ЦВД Центральное венозное давление
ШОКС Шкала оценки клинического состояния
ЩФ Щелочная фосфатаза
ЭАМ Экскреция альбумина с мочой
ЭКГ Электрокардиография
ЭХОкт Эхокардиография

Сокращения на английском языке
А Аденин
C Цитозин
G Гуанин
T Тимидин
ACC/AHA Американская коллекция кардиологов и Американская ассоциация сердца
ADRB β-адренергический рецептор
ADRA α-адренергический рецептор
AGT Ангиотензиноген
ATS/ERS Американское торакальное общество и Европейское респираторное общество
BSA Площадь поверхности тела
Ca*P Кальций-фосфорное произведение сыворотки крови
CKD-EPI Формула для расчета СКФ, предложенная на основании базы данных, включающей 8254 больных
FGF23 Фактор роста фибробластов 23
GNB3 Субъединица β3 белка G
GRK G-белок-связанная рецепторкиназа
GWAS Полногеномные исследования
KDIGO Организация по улучшению исходов при патологии почек
LLN Нижняя граница нормы
MDRD Формула для расчета СКФ, предложенное в исследовании Modification of Diet in Renal Disease Study
NO Оксид азота
NT-NT-концевой предшественник мозгового натрийуретического пептида
proBNP proBNP
NYHA New York Heart Association
RANK Рецептор активатора ядерного фактора кВ
RANKL Лиганд рецептора активатора ядерного фактора кВ
SNP Однонуклеотидный полиморфный маркер

Параметры почечной гемодинамики
AI Индекс ускорения
AT Время ускорения
CIк Индекс минутного объемного кровотока
COк Минутный объемный кровоток
D Диаметр
PI Пульсационный индекс
RI Индекс резистентности (резистивный)
S/D Систоло-диастолическое соотношение
SIk Индекс объема крови, поступающего в основной ствол ПА в течение 1 сердечного цикла
SVk Объем крови, поступающий в основной ствол ПА в течение 1 сердечного цикла
TAMX Усредненная по времени в течение сердечного цикла максимальная скорость кровотока
Ved Конечная диастолическая скорость кровотока
Vps Пиковая систолическая скорость кровотока
VTI Интеграл линейной скорости кровотока
Индексы параметров почечной гемодинамики и УЗ-исследования почек
R В основном стволе правой почечной артерии
L В основном стволе левой почечной артерии
RL Суммарный(в правой + левой почечной артерии)
общ Относящийся к общему объемному почечному кровотоку
baz Относящийся к базальному объемному почечному кровотоку
ВВЕДЕНИЕ

Актуальность темы

Несмотря на значительные достижения в лечении различных сердечно-сосудистых заболеваний, распространенность хронической сердечной недостаточности (ХСН) продолжает расти [184].

В мире 23 миллиона человек страдают ХСН. В Европейских странах это заболевание диагностировано у 1-2,6% населения [626], в США - у 5,7 млн взрослых старше 20 лет, распространенность составляет 2,2% [383, 655]. В Российской Федерации ХСН выявлена у 7,9 миллионов человек, по другим данным - у 7% населения, и почти 70% у лиц старше 90 лет [38, 78], т.е. распространенность этого заболевания в нашей стране значительно превышает таковую в Европейских странах и США.

В Европе на долю ХСН приходится 5% всех госпитализаций [869]. В США ХСН приводит к 1,023 миллиону госпитализаций ежегодно (6,5 млн койко дней) [655]. В РФ среди госпитализированных больных с ССЗ ХСН является основной причиной госпитализации у 16,7%. Это заболевание является самой частой причиной стационарного лечения среди лиц старше 65 лет [78, 457]. Причем около 50% больных с ХСН повторно госпитализируются в течение 6 месяцев, 20-25% больных - в течение 30 дней после выписки из стационара - [777]. 70% повторных госпитализаций связано с декомпенсацией СН [373].

В будущем в связи со старением популяции, увеличением распространенности кардиальных факторов риска и улучшением выживаемости больных с различной сердечно-сосудистой патологией ожидается дальнейший рост числа больных с ХСН [457]. К 2030 году прогнозируется увеличение количества больных с ХСН на 46% [655].
Стоимость лечения ХСН в США в 2012 году составила 30,7 миллиардов долларов [383]. К 2030 году ожидается ее увеличение на 127% - до 69,7 миллиардов долларов в год [383, 655].

Прогрессирование ХСН сопровождается резким снижением качества жизни, снижением/утратой трудоспособности больных и увеличением летальности. Причем потери трудоспособного населения, обусловленные сердечнососудистой заболеваемостью и смертностью, в Европейском Союзе составляют 45 миллионов евро в год [673].

Ведущей причиной сердечно-сосудистой летальности является ХСН [101]. Смертность при ХСН в 4-10,3 раза выше, чем в общей популяции соответствующего возраста, и сравнима, или даже превосходит, смертность от ряда онкологических заболеваний [141, 596]. Пятилетняя летальность при ХСН момента постановки диагноза до 90-х годов составляла 60-70% больных, в последние годы отметилось ее небольшое, но значимое снижение до 50%[383, 626, 655]. Ежегодная смертность при ХСН составляет 17,4-33%[591]: в США - 250 тысяч, в РФ - 612 тысяч человек в год[38]. Причем смертность у больных с ХСН с сниженной фракцией выброса левого желудочка (ФВ ЛЖ) выше, чем у больных с ХСН с сохраненной ФВ ЛЖ независимо от возраста, пола и этиологии ХСН [101]. Внутрибольничная летальность при ХСН составляет 2-20%. Ранняя постгоспитальная (в течение 30 дней после выписки из стационара) – 11,3% [456].Смертность больных с ХСН остается высокой, даже несмотря на лечение ингибиторами АПФ, бета-блокаторами и антагонистами рецепторов альдостерона, показавших в многочисленных клиникоцих исследованиях значительное снижение относительного риска смертности по сравнению с плацебо[89, 93, 730].

В связи с этим задачами здравоохранения является значительное улучшение качества медицинской помощи больным с ХСН, профилактика прогрессирования заболевания и инвалидизации, улучшение качества и увеличение продолжительности жизни.
В настоящее время ХСН рассматривается как системная патология, при которой поражаются не только сердце и сосуды, но и многие системы органов [735]. Однако комплексного изучения поражения различных органов-мишеней при этом заболевании не проводилось. Недостаточно изучены клинические, лабораторные, инструментальные, генетические и социальные факторы, влияющие на развитие поражения органов-мишеней, прогрессирование и декомпенсацию ХСН, взаимосвязь этих факторов друг с другом, а также их влияние на частоту госпитализаций и смертность больных. Недостаточно изучено влияние поражения различных органов-мишеней на выраженность клинической симптоматики, переносимость физических нагрузок, качество жизни и прогноз при ХСН. Отсутствует сравнительная характеристика поражения органов-мишеней при ХСН с низкой и сохраненной систолической функцией левого желудочка. Не окончательно разработаны методы ранней диагностики и профилактики поражений органов-мишеней. Нет классификаций степени выраженности и клинических вариантов поражения органов-мишеней при ХСН. Сравнительные исследования влияния на органы мишени различных препаратов из групп, рекомендованных для лечения больных с ХСН, практически не проводились. Специфическая органопротективная терапия для данной категории больных в настоящее время не разработана. В Руководствах по ведению пациентов с СН конкретных рекомендаций по выявлению и лечению поражений органов-мишеней в настоящее время нет [130, 626]. При этом в Рекомендациях Европейского общества кардиологов по ведению больных с СН среди основных направлений, по которым необходимы дальнейшие исследования этой патологии, указано изучение особенностей ведения ХСН с кардиоренальным синдромом, сахарным диабетом, анемией, депрессией, апноэ во сне и другой сопутствующей патологией [626], в т.ч. с поражением различных органов-мишеней.

Учитывая все вышеперечисленное, изучение особенностей поражения органов-мишеней при ХСН является актуальной задачей.
Цель исследования

Изучить поражение органов-мишеней у больных с хронической сердечной недостаточностью и разработать методы ранней диагностики, профилактики и коррекции поражения органов-мишеней при этом заболевании.

Задачи исследования

Для достижения указанной цели были поставлены следующие задачи:

1. провести комплексную оценку структурно-функционального состояния сердечно-сосудистой системы, почек, печени, костной системы, бронхолегочного аппарата как основных органов-мишеней при ХСН,

2. изучить различные предикторы (клинико-анамnestические, инструментальные, лабораторные, генетические) и механизмы (гемодинамические, нейрогормональные, метаболические, апоптоз, воспаление) поражения исследуемых органов-мишеней, разработать систему для оценки персонального риска развития поражения органов-мишеней при ХСН,

3. изучить возможности ранней диагностики поражения органов-мишеней у больных с ХСН и выявить их клинические варианты,

4. изучить взаимосвязь поражения органов-мишеней с выраженностью клинической симптоматики, ограничением физической активности, поражением других органов-мишеней, качеством жизни, течением, прогрессированием и прогнозом у больных с ХСН,

5. на основании полученных результатов, а также современных национальных и международных рекомендаций по лечению коморбидных состояний, результатов фармакологических исследований разработать комплексный подход к индивидуальный тактике ведения пациентов, направленный на профилактику и коррекцию поражения различных органов-мишеней, улучшение качества и увеличение продолжительности жизни больных с ХСН.
Научная новизна работы

Впервые произведена комплексная оценка характера, степени выраженности, распространенности, предикторов и механизмов поражения различных органов-мишеней: структурно-функционального состояния сердечно-сосудистого аппарата, почек, печени, бронхолегочной и костной систем, метаболических изменений у больных с ХСН. Разработана научная концепция формирования поражения органов-мишеней при этом заболевании. Предложена гипотеза о наличии специфических факторов риска формирования и прогрессирования поражения органов-мишеней при ХСН. Выделены группы повышенного риска по развитию поражения органов-мишеней. Установлены общие закономерности и взаимосвязи поражения различных органов-мишеней. Выявлен влияние поражения различных органов-мишеней на выраженность клинической симптоматики, толерантность к физическим нагрузкам, качество жизни, течение и прогноз ХСН. Предложены методы ранней диагностики и подходы к коррекции поражения органов-мишеней при ХСН.

Впервые выявлено частое развитие хронической болезни почек у больных ХСН без исходной внесердечной патологии. Установлены признаки поражения почек при ХСН различной этиологии и степени тяжести. Показана этапность и неблагоприятное прогностическое значение поражения почек при ХСН.

Впервые проведена комплексная оценка минерально-костных нарушений при ХСН. Показано частое развитие гипокальциемии, гиперфосфатемии, вторичного гиперпаратиреоза, дефицита/недостаточности витамина D у больных с ХСН, их взаимосвязь с поражением сердца и почек. Выявлена роль гиперфосфатемии и вторичного гиперпаратиреоза как новых предикторов неблагоприятного прогноза при ХСН.

Впервые исследована костная система как орган-мишень у больных с ХСН. Показано частое поражение костной системы при ХСН в виде снижения минеральной плотности кости, развития остеопороза и остеопении,
ассоциированных с развитием переломов. Выявлена взаимосвязь поражения костной системы с переносимостью физических нагрузок, физической активностью, поражением почек, вторичным гиперпаратиреозом и дефицитом/недостаточностью витамина D. Выявлена тенденция к повышению смертности при развитии остеопороза и переломов при ХСН.

Впервые изучены маркеры костеобразования (интактный остеокальцин – ОК) и костной резорбции (С-концевой телопептид коллагена I типа – СТП, остеопротегерин – остеопротегерин) и кальцитонин у больных с ХСН. Выявлена их взаимосвязь с нарушениями кальций-fosфорного гомеостаза, вторичным гиперпаратиреозом, поражением костной системы и почек, гипертензивным анамнезом и структурно-функциональными изменениями сердца.

Проведено обследование структурно-функционального состояния бронхолегочного аппарата (спирография, пневмотахография, исследование сопротивления дыхательных путей, газового состава крови с помощью бодиплетизмографа) и оценка его влияния на выраженность клинической симптоматики, ограничение физической активности, прогрессирование заболевания, поражение других органов-мишеней, а также вклада в изменение качества жизни и прогноз у больных с ХСН.

Впервые проведен анализ полиморфных маркеров Pro72Arg и C(-594)CC гена TP53, полиморфного маркера C825T гена GNB3 и полиморфных маркеров генов, кодирующих бета2-адренорецептор (АДРБ2) как генетических факторов риска поражения органов-мишеней при ХСН.

Представлены результаты 10-летнего наблюдения за больными с ХСН, прослежены динамические изменения в органах-мишениях, взаимосвязь с проводимой терapiей, осложнения, развившиеся в течение этого времени, их прогностическое значение и взаимосвязь с поражением органов-мишеней. Разработан подход для профилактики прогрессирования поражения органов-мишеней и развития осложнений.

Показана необходимость своевременной диагностики поражения ор-
ганов-мишеней и органопротективной терапии для улучшения качества и продолжительности жизни больных с ХСН и необходимость мультидисциплинарного подхода к пациентам с этим заболеванием.

Практическая значимость работы

1. Показана необходимость скринингового обследования больных с ХСН для раннего и адекватного выявления поражения органов-мишеней и назначения органопротективных мероприятий с целью замедления его прогрессирования, предотвращения развития тяжелых осложнений и увеличения продолжительности и качества жизни пациентов.

2. Показано значение дуплексного сканирования почечных артерий для диагностики и определения степени тяжести дисфункции почек, динамического наблюдения и стратификации риска у больных с ХСН.

3. Показана важность выявления нарушений кальций-фосфорного обмена, недостаточности витамина D, гиперпартиреоза гиперфосфатурии для оценки прогноза у больных с ХСН.

4. Выявлены данные о предикторах и механизмах развития, прогрессирования и декомпенсации ХСН, распространенности, характере и степени тяжести поражения органов-мишеней, его влиянии на течение, выраженность клинической симптоматики, снижение функциональных возможностей пациентов, состояние центральной и периферической гемодинамики, поражение других органов и их систем, качество и продолжительность жизни больных с ХСН в российской популяции. Это может облегчить развитие выявляющих причины диагностических методов, патогенетических лечебных и профилактических мероприятий.

5. Предложены методы медикаментозной и немедикаментозной профилактики и терапии поражения органов-мишеней, способствующие улучшению качества жизни, сохранению работоспособности и уменьшению смертности больных, что может привести к снижению роста заболеваемости ХСН, частоты госпитализаций, уменьшению экономических затрат.
на лечение, социальной реабилитации, увеличению количества трудоспособного населения страны и национального валового продукта, начато внедрение их в практическое здравоохранение.

6. На основе исследования взаимосвязи клинических и генетических маркеров развития ХСН и поражения органов-мишеней предложена модель для оценки персонального риска развития поражения органов-мишеней и неблагоприятного прогноза.

8. Внедрение результатов исследования позволит значительно повысить качество ранней диагностики, профилактики и лечения ХСН, снизив при этом расходы за счет индивидуального подбора профилактических и лечебных мероприятий, учитывая полученные результаты об имеющихся факторах риска.

Внедрение

Результаты исследования внедрены и используются в терапевтических и кардиологических отделениях, отделении функциональной и лабораторной диагностики ГБУЗ ГКБ №12 ДЗМ (с 09.2015 – ГБУЗ ГКБ им.В.М.Буянова ДЗМ) и в кардиологическом отделении ГБУЗ ГКБ №24 ДЗМ.

Публикации

По материалам диссертации опубликовано 86 печатных работ, 17 – в рецензируемых журналах, 22 – в зарубежных изданиях.

Апробация диссертации

Основные положения диссертации представлены в виде докладов на:

- совместном заседании сотрудников кафедры госпитальной терапии №2 лечебного факультета ГБОУ ВПО РНИМУ им.Н.И.Пирогова Минздрава РФи ГКБ №12 ДЗМ,
- XIII и XXII Российском Национальном Конгрессе «Человек и лекарство» (Москва, 2006 и 2015),
• Европейских конгрессах кардиологов - ESC Congress (Munich, Germany, 2012; Barselona, Spain, 2014),
• XV-м Международном Конгрессе диетологов и нутрициологов «Питание и здоровье» (Москва, 2014),
• Конгрессе по сердечной недостаточности Европейского общества кардиологов 2010 - Heart Failure 2010 Congress (Berlin, Germany, 2010, Travel grant of the European Society of Cardiology (ESC),
• 20-й Конференции по артериальной гипертензии - 20th European Meeting on Hypertension (Oslo, Norway, 2010, Accommodation grant of the European Society of Hypertension (ESH),
• XLIII и LI Конгрессах Европейской Ассоциации Почек – Европейской Ассоциации Диализа и Трансплантации – Congress of the European Renal Association – European Dialysis and Transplant Association (ERA-EDTA) (Глазго, Великобритания, 2006; Амстердам, 2014),
• VI, VII, X Ежегодной Конференции (I и IV Конгрессах) Общества специалистов по сердечной недостаточности "Сердечная недостаточность' 2005, 2006, 2009" (Москва, 2005, 2006, 2009, диплом за лучшую работу в области патофизиологии и патогенеза кардиологической патологии конференции молодых ученых),
• 10-м Юбилейном Конгрессе Российского общества холтеровского мониторирования и неинвазивной электрофизиологии (РОХМиНЭ) и 3-й Всероссийский Конгресс "Клиническая электрокардиология" (Санкт-Петербург, 2009),
• 9-й Всероссийской медико-биологической конференции молодых ученых «Человек и его здоровье» (Санкт-Петербург, 2006, II место),
• Российском Национальном Конгрессе кардиологов 2006, 2015 (Москва, 2006, 2015),
• 14-м Европейском конгрессе по внутренним болезням - 14th European Congress of Internal Medicine (ECIM) (Москва, 2015) и др.

Награды

• 2009 Национальная стипендия L’OREAL-Юнеско «Для женщин в науке»
• 2010 Избрание Действительным членом Европейского Совета по сердечно-сосудистым исследованиям (ECCR)

Гранты

• 2009-2010 Грантополучатель гранта Президента РФ для государственной поддержки молодых российских ученых «Нарушения кальций-фосфорного гомеостаза, обмена витамина D и вторичный гиперпаратиреоз при хронической сердечной недостаточности: взаимосвязь с клинической картиной, качеством жизни, выраженностью и прогрессированием кардиоренальной дисфункции, прогнозом» (МК-3133.2009.7)
• 2010-2011 Со-исполнитель гранта РГНФ по программе «Поддержка приоритетных фундаментальных гуманитарных исследований» 2010 г. «Исследование качества жизни и возможностей медицинской и социальной реабилитации у больных после жизнеспасающего лечения» (10-06-00112а)
2010 TravelgrantoftheEuropeanSocietyofCardiology (ESC) для участия и представления постерного доклада на Конгрессе по сердечной недостаточности, 29.05-1.06.2010 (HeartFailure 2010 Congress, Berlin, Germany)

2010 AccomodationgrantoftheEuropeanSocietyofHypertension (ESH) для участия и представления постерного доклада на 20-й Конференции по гипертензии, 18-22.06.2010 (20th European Meeting on Hypertension, Oslo, Norway)

2011-2012 Грантополучатель гранта Президента РФ для государственной поддержки молодых российских ученых «Исследование поражения органов-мишеней у больных с хронической сердечной недостаточностью и возможностей органопротективной терапии для предотвращения прогрессирования заболевания, увеличения продолжительности и улучшения качества жизни пациентов» (MK-5070.2011.7)

2012 FreeregistrationfromtheEuropeanSocietyofCardiology (ESC) для участия и представления постерного доклада на Европейском Конгрессе кардиологов, 25.08-28.08.2012 (ESC 2012 Congress, Munich, Germany)

2014 Грант Российского кардиологического общества (РКО) для участия и представления постерного доклада на Европейском Конгрессе кардиологов, 30.08-3.09.2014 (ESC 2014 Congress, Barcelona, Spain)

Объем и структура работы

Диссертация изложена на 500 страницах машинописного текста, иллюстрирована 64 таблицами и 56 рисунками, состоит из введения, обзора современной литературы, описания клинического материала и методов исследования, изложения результатов собственных исследований, обсуждения полученных результатов, заключения, выводов, практических рекомендаций. Список использованной литературы включает в себя 992 работы, из них 88 отечественных. В Приложении представлены использованные в работе опросники, клинические примеры.
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

В последние годы было доказано, что хроническая сердечная недостаточность (ХСН) имеет системный характер. Под этим подразумевается развитие оксидативного стресса с участием активных форм кислорода и азота, которые начинают преобладать над компонентами эндогенной антиоксидантной защиты, провоспалительное состояние с активацией мононуклеарных клеток периферической крови и повышением циркулирующих цитокинов, таких как интерлейкин-6 и фактор некроза опухоли альфа (ФНО-α), и катаболического состояния с потерей массы мягких тканей и костей, объясняющее, в частности, отрицательный калораж и азотистый баланс [122]. При этом происходит нарушение нервной, эндокринной и метаболической регуляции, что со временем приводит к прогрессирующей полиорганной недостаточности [934]. Однако поражение отдельных органов-мишеней при ХСН изучено недостаточно и является актуальной кардиологической задачей [73].

Почки как орган-мишень при ХСН, кардиоренальный синдром

Концепция о вкладе почек в развитие ХСН посредством задержки натрия и воды была предложена еще Э.Г. Старлингом в конце 19 века. Роль задержки натрия и воды почками в формировании отечного синдрома была многократно подтверждена различными экспериментальными и клиническими данными. В связи с этим лечение ХСН на всем протяжении 20 века базировалось на лекарственных препаратах, усиливающих экскрецию натрия и воды почками[193].

В начале 21 века почки стали рассматривать как орган, способствующий не только формированию отечного синдрома, но и прогрессированию дисфункции миокарда. Это связано с тем, что почки, задерживая натрий и воду, способствуют дилатации ЛЖ, а вырабатывающая ренин и активируя ренин-ангиотензин-альдостероновую систему (РААС), — развитию
гипертрофии и фиброза миокарда [193]. В это же время появились данные, что у больных с ХСН может развиваться дисфункция почек, в ряде случаев прогрессирующая вплоть до развития хронической болезни почек (ХБП) и терминальной хронической почечной недостаточности (ХПН)[10, 783, 786].

В настоящее время стали говорить о проблеме «двойной эпидемии» сердечной и почечной недостаточности [740], поскольку у ряда больных одновременно имеются проявления этих двух клинических состояний, что привело к появлению и внедрению понятия «кардиоренальный синдром»[28, 65, 71, 85].

Кардиоренальный синдром представляет собой одновременное наличие у больного дисфункции/недостаточности сердца и почек[171, 175, 412, 837]. Первоначально у больного с кардиоренальным синдромом может быть патология почек, приводящая к развитию почечной недостаточности, а затем сердечно-сосудистым осложнениям и сердечной недостаточности. И, наоборот, первичная патология сердца может приводить к ХСН, которая осложняется развитием дисфункции почек, ХБП и даже терминальной ХПН. В связи с этим выделяют 5 типов кардиоренального синдрома[769-771, 773, 774]. Тип 1 – острый кардиоренальный синдром (острое повреждение почек при остром коронарном синдроме, кардиогенном шоке, острой декомпенсации СН–ОДСН)[83, 144, 448, 473, 772]. Тип 2 – хронический кардиоренальный синдром (развитие хронической болезни почек при хронической сердечной недостаточности)[486]. Тип 3 – острый ренокардиальный синдром (острая сердечная недостаточность, аритмии, ишемия, артериальная гипертония (АГ) на фоне острой ишемии почек или гломерулонефрита)[227]. Тип 4 – хронический ренокардиальный синдром (систолическая и диастолическая дисфункция, гипертрофия миокарда, повышенный риск сердечно-сосудистых эпизодов у больных с ХБП)[447]. Тип 5 – вторичный кардиоренальный синдром, развивающийся при системных заболеваниях, таких
как сахарный диабет (СД), системные васкулиты, системная красная волчанка, амилоидоз, сепсис, которые одновременно поражают и сердце, и почки, приводя к развитию их дисфункции [861]. Т.е., поражение почек у больных с сердечной недостаточностью представляет собой кардиореннальный синдром 1 или 2 типа.

Прогностическое значение креатинина и СКФ у больных с ХСН

Чрезвычайно важной задачей является выделение больных с высоким риском смерти среди больных с ХСН, т.к. неблагоприятный прогноз является главным основанием для проведения трансплантации сердца [605]. В настоящее время известно большое количество клинических, гемодинамических, биохимических и электрофизиологических факторов, влияющих на прогноз у больных с ХСН [243]. В повседневной клинической практике независимое прогностическое значение имеют функция ЛЖ (в т.ч. фракция выброса ЛЖ), тяжесть клинической симптоматики (в т.ч., ФК NYHA) и этиология заболевания. Дополнительное значение имеют биохимические показатели, включая концентрацию натрия и нейрогормонов (норадреналина, альдостерона, активность ренина и др.) в сыворотке крови. Длительное время значение функции почек как прогностического фактора недооценивалось или игнорировалось. Большие рандомизированные клинические исследования больных с ХСН делали акцент на сердечно-сосудистую смертность и неблагоприятные кардиальные события, а почечные исходы обычно сообщались в качестве конечных точек безопасности или не сообщались вообще. Лишь в небольшом количестве исследований, обычно как анализ постфактум, сообщалось о долгосрочном изменении креатинина или СКФ, микро- или макроальбуминурии и других аспектах повреждения почек, таких как фиброз или воспаление [251].

Впервые прогностическое значение концентрации креатинина в сыворотке крови у больных с ХСН было показано в середине 90-х годов 20 века [326, 590]. В 2000 году Hillege и соавт. рассчитали СКФ по формуле Кокрофта-Голта у больных с ХСН III-IV ФК NYHA и фракцией выброса
ЛЖ менее 35%, включенных в исследование PRIME-II[408]. Они показали, что СКФ является независимым предиктором общей и сердечно-сосудистой смертности, даже более сильным, чем функциональный класс и фракция выброса ЛЖ [339, 429, 431]. При СКФ<44 мл/мин (нижний квартиль) относительный риск смерти был почти в 3 раза выше (relative risk 2,85, p<0,001), чем при СКФ>76 мл/мин (верхний квартиль) [431]. Dries и соавт., ретроспективно проанализировав данные исследований SOLVD-TreatmentandPrevention, подтвердили, что расчетные значения СКФ являются важным фактором, определяющим выживаемость больных с ХСН [89, 90, 295]. Это было подтверждено и у пациентов Российской популяции [55].

Учитывая тесную взаимосвязь прогноза при ХСН с нейрогуморальной активацией и слабую корреляцию последней с гемодинамическими параметрами, отражающими нарушение функции сердца, Marenzi и соавт. исследовали функцию почек (концентрацию креатинина в сыворотке крови) в качестве определяющей нейрогуморальной активации. Они показали, что уровень нейроргормонов в плазме является результатом независимой конвергенции и сердечной, и почечной дисфункции [605]. При одинаковой выраженности дисфункции концентрации норадrenalина, альдостерона и активность ренина в плазме были значительно выше у больных с большим снижением функции сердца, а при одинаковой выраженности дисфункции сердца – у больных с нарушением функции почек [605]. Т.е. при схожих гемодинамических характеристиках отмечалась взаимосвязь нейрогуморальной активации и функции почек. С одной стороны, это может быть обусловлено тем, что степень нейрогуморальной активации определяет состояние функции почек и гиперактивация соответствующих систем приводит к тяжелой дисфункции почек. С другой стороны, повышение концентрации нейрогормонов в крови может быть обусловлено снижением их выведения почками [605].
Было выявлено, что не только исходный уровень креатинина в сыворотке, но и повышение его за время госпитализации по поводу ХСН (ухудшение функции почек) связано с меньшей выживаемостью, большей продолжительностью и частотой госпитализаций [342, 533, 729]. Gottlieb и соавт. показали, что с неблагоприятными исходами связано увеличение концентрации креатинина даже на 0,1 мг/дл (8,8 мкмоль/л). Увеличение этого показателя на ≥0,3 мг/дл (26,5 мкмоль/л) с чувствительностью 81% и специфичностью 62% позволяло прогнозировать внутрибольничную смертность, а с чувствительностью 64% и специфичностью 65% – продолжительность госпитализации более 10 дней [391]. Smith и соавт. показали, что увеличение концентрации креатинина в сыворотке крови за время госпитализации на 0,2 мг/дл (17,7 мкмоль/л) и более было связано с повышением риска смерти в течение последующих 6 месяцев на 67% и вероятности повторных госпитализаций на 33%. Причем увеличение концентрации креатинина крови за время госпитализации было более сильным предиктором смертности, чем его исходный уровень [856].

Krumholz и соавт. выделили независимые предикторы повышения концентрации креатинина в сыворотке крови за время госпитализации у больных с ХСН: мужской пол, исходную концентрацию креатинина в сыворотке крови >1,5 мг/дл (132,6 мкмоль/л), неконтролируемую гипертензию (САД>200 мм рт.ст.), ЧСС>100 в минуту и хрипы, выходящие за пределы базальных отделов легких [533]. Cowie и соавт. показали, что к таким предикторам относится также фибрилляция предсердий [244]. Gottlieb, Forman и соавт. выявили значение для развития ухудшения функции почек за время госпитализации возраста, сопутствующей артериальной гипертензии (независимо от абсолютных цифр АД) и сахарного диабета [342, 391].

После публикации результатов этих исследований были проведены дополнительные исследования и мета-анализы, подтвердившие увеличение риска смерти при поражении почек при ХСН. Smith и соавт. в метаанализе 7 исследований с ХСН (n=16106) и 2 исследований с ОСН (n=54305) вы-
явил увеличение риска смерти в отдаленном периоде при тяжелом почечном поражении на 56%. Более того, ухудшение функции почек было ассоциировано с повышением смертности в течение 6 месяцев на 47% [855]. Damman и соавт. в мета-анализе (n=18634) показали, что ухудшение функции почек приводит к повышению риска смерти на 61% и риска повторных госпитализаций на 30% в течение 2-6 месяцев наблюдения [257].

Butler и соавт. в мета-анализе 20 проспективных исследований, 5 субанализов клинических исследований и 17 ретроспективных наблюдательных исследований больных с острой СН (n=275832, продолжительность наблюдения от 1 месяца до 8 лет, в большинстве — от 6 месяцев до 1 года) подтвердили взаимосвязь поражения почек и ухудшения функции почек (в большинстве исследований — увеличение концентрации креатинина ≥0,3мг/дл (26,5 мкмоль/л) за время госпитализации) с внутрибольничной, отдаленной летальностью, частотой повторных госпитализаций или комбинированной конечной точкой повторная госпитализация/смерть, с продолжительностью госпитализаций [114, 196, 244, 331, 342, 516, 521, 533, 578, 636, 677, 684, 700, 856]. Причем поражение и ухудшение функции почек было значимым предиктором продолжительности госпитализации ≥10 дней [342, 961]. В 2 ретроспективных исследованиях и 1 субанализе результатов клинических исследований было выявлено, что осложнения СН взаимосвязаны с дисфункцией почек. Klein и соавт. показали, что частота длительной гипотензии, неэффективности терапии и внутрибольничных осложнений увеличивалась при повышении азота мочевины крови [516]. Heywood и соавт. показали, что необходимость проведения сердечно-легочной реанимации, механической вентиляции легких и ультрафильтрации увеличивалась при нарастании тяжести дисфункции почек [426]. Forman и соавт. выявили, что ухудшение почек приводило к двухкратному повышению вероятности больших осложнений, таких как кардиогенный шок, инфаркт миокарда, инсульт, значимых инфекционных осложнений/сепсиса, значимой гипотензии и развития ФП [342].
DeSilva и соавт. выявили предикторы снижения функции почек в течение 6 месяцев после обследования: сосудистую патологию (острые нарушения мозгового кровообращения и транзиторные ишемические атаки, заболевания периферических сосудов, стеноз почечной артерии, аневризму брюшного отдела аорты, диагностированные при включении в исследование), лечение тиазидными диуретиками и исходный уровень мочевины в сыворотке выше 9 ммоль/л [266]. Не было значительных различий в проценте от максимально рекомендованной дозы ингибиторов АПФ, которая использовалась исходно и после периода наблюдения, у больных со снижением и увеличением СКФ, рассчитанной по формуле MDRD2 [267]. Исходно назначавшиеся дозы диуретиков не отличались у больных с увеличением и снижением СКФ, однако через 6 месяцев они были значитель но выше у больных с ухудшением функции почек, чем без него [266].

Взаимосвязь дисфункции почек и прогноза при ХСН в настоящее время объясняют, во-первых, усугублением застойных явлений вследствие нарушения функции нефронов и снижения эффективности диуретиков, и, во-вторых, недостаточным выведением токсичных веществ, таких как окисленные катехоламины, уремические факторы и мочевая кислота [266, 855].

Распространенность снижения СКФ у больных с ХСН

Работы, показавшие прогностическое значение повышения концентрации креатинина в сыворотке крови и снижения СКФ при ХСН, привели к значительному интересу исследователей к проблеме дисфункции почек у больных с ХСН. На основании различных баз данных, включающих больных с сердечной недостаточностью, была рассчитана СКФ и проведен анализ ее взаимосвязи с имеющейся информацией о пациентах.

Согласно Национальному регистру больных с острой декомпенсацией сердечной недостаточности (ADHERE[107]), который включает около 100000 пациентов различного возраста и со всевозможной сопутствующей патологией (в т.ч. с терминальной ХПН), госпитализированных в 270 ста-
циониров США в связи с острой декомпенсацией сердечной недостаточности, средняя СКФ, рассчитанная по формуле Кокрофта-Голта, составила 48,9 мл/мин/м² у мужчин и 35,0 мл/мин/м² у женщин [425]. Острая декомпенсация развивалась de novo (вследствие инфаркта миокарда, массивной ТЭЛА и т.д.), на фоне выраженной ХСН (в результате острой ишемии миокарда, резкой отмены лекарственной терапии, инфекции и т.д.) или после операций на сердце, особенно в ближайший послеоперационный период (за счет индуцированной кардиоплегией миокардиальной дисфункции, приводившей к резкому снижению сердечного выброса) [154, 425].

Согласно Медицинской информационной системе Правительственной программы медицинской помощи Medicare, снижение рассчитанной по формуле MDRD СКФ ниже 60 мл/мин/1,73м² выявлялось у 60,4% пациентов, находившихся на стационарном лечении с диагнозом ХСН[621]. По данным Bruch и соавт., СКФ (MDRD2) ниже 60 мл/мин/1,73м² в течение 3 месяцев отмечалась у 50,2% больных с ХСН[187]. В исследовании deSilva и соавт. СКФ (MDRD2) ниже 60 мл/мин была у 57% больных [266]. В других исследованиях распространенность снижения СКФ <60 мл/мин/1,73м² среди больных, госпитализированных в стационары с декомпенсацией ХСН, также составляла 50-70% [295, 321, 619, 620, 625, 853]. Однако во всех перечисленных исследованиях среди участников было значительное количество больных старческого возраста и лиц с сопутствующей патологией, способной привести к снижению функции почек, в большинстве СКФ определялась однократно.

В 2005 году McMurray ретроспективно проанализировал базы данных крупных клинических исследований CONSENSUS[575], SOLVD[115], DIG[112, 837], CIBIS-II[313], COMET[742], CHARM[624], CARE-HF[230] и выявил, что снижение клиренса креатинина, рассчитанного по формуле Кокрофта-Голта, или снижение СКФ, рассчитанной по формуле MDRD, ниже 60 выявлялось у 32-50% больных с ХСН [625]. Больные, включенные в эти исследования, были младше, а сопутствующая патология выявлялась
у них реже, чем в общей когорте больных с ХСН. Концентрация креатинина в сыворотке крови среди участников указанных исследований достигала 175-300 мкмоль/л (2,0-3,4 мг/дл) [145, 248, 416, 625].

В соответствии с современными рекомендациями, самой точной и универсальной формулой для определения СКФ является формула СКД-EPI[67]. Однако у пациентов с СН оценка функционального состояния почек с помощью этого метода и сравнения его с ранее использовавшимися практически не проводились. Недостаточно изучено влияние поражения почек на выраженность клинической симптоматики, переносимость физических нагрузок и качество жизни больных с ХСН. Отсутствует сравнительная характеристика поражения почек при ХСН с низкой и сохраненной систолической функцией левого желудочка. Проведено недостаточное количество сравнительных исследований по влиянию на почки различных препаратов из групп, рекомендованных для лечения больных с ХСН. Недостаточно исследованы особенности ведения ХСН с кардиorenальным синдромом ис/без сахарного диабета[626]. Недостаточно изучены особенности ХБП, развивающейся на фоне ХСН.

Экскреция альбумина с мочой у больных с ХСН

Повышенное экскреции альбумина с мочой (ЭАМ) является маркером повреждения почек, широко использующимся для диагностики ХБП [44, 67].

Микро- и макроальбуминурия хорошо изучены у больных с СД, АГ и первичной патологии почек [94]. У больных с СД и АГ микроальбуминурия является важным фактором риска снижения СКФ и развития ХПН[263]. У больных с ХБП на фоне первичной патологии почек альбуминурия тоже является важным прогностическим фактором прогрессирования заболевания почек, а также фактором риска развития сердечно-сосудистой патологии [94]. Borch-Johnsen и соавт. на основании 10-летнего наблюдения за 2085 пациентами без патологии почек, мочевыводящих путей и сахарного диабета показали, что микроальбуминурия является независимым предик-
тором развития ИБС. Наличие ее в 2,3 раза увеличивало предсказательную ценность других установленных факторов риска развития ИБС, в т.ч. АГ и гиперлипидемии. Jensen и соавт. выявили, что у больных с АГ и высоким нормальным уровнем АД наличие микроальбуминурии увеличивает риск развития ИБС в 4 раза. Кроме того, у больных с СД, АГ и в общей популяции микроальбуминурия является независимым предиктором сердечно-сосудистой и общей смертности [430].

По мнению Hillege и соавт., клиническая роль альбуминурии в скрининге сердечно-сосудистых заболеваний аналогична роли артериального давления и уровня липидов в крови [430]. Однако распространенность и прогностическое значение этого показателя у больных с ХСН до сих пор мало изучены [56].

Однозначного ответа на вопрос, с поражением какого отдела почек связана микроальбуминурия, нет. При сахарном диабете, артериальной гипертензии и патологии почек повышение скорости экскреции альбумина связывают с нарушением работы полупроницаемого клубочкового фильтра и повышением внутриклубочкового давления [698]. Повышенная проницаемость клубочкового фильтра для альбумина может отражать наличие генерализованной дисфункции эндотелия [28, 715]. Кроме того, она может быть связана с капилляропатией на фоне атеросклероза [268, 430, 432].

На ранних стадиях диабетической нефропатии нарушение проницаемости клубочкового фильтра также связано с изменением заряда анионных компонентов базальной мембраны клубочков. Затем у этих больных увеличивается размер пор в гломерулярной базальной мембране, что может приводить к развитию макроальбуминурии. Т.е. повышение экскреции альбумина с мочой сначала может быть связано с заряд-опосредованными, а затем со структурными изменениями базальной мембраны клубочков [56].

Транскапиллярная утечка альбумина, оцененная инвазивными методами, в норме и при эссенциальной гипертензии не коррелировала с экс-
Крецией альбумина с мочой и не различалась у больных с нормальным и повышенным уровнем альбуминурии. Это может свидетельствовать о том, что не только поражение клубочков приводит к ее развитию [715]. Ранее предполагалось, что молекулы альбумина в процессе фильтрации и пассажа по канальцам не изменяются. Потом было обнаружено, что до развития альбуминурии у больных с сахарным диабетом 90-95% профильтровавшегося альбумина разрушается в канальцах до малых фрагментов с молекулярной массой 1-15кДа, не определяемых стандартными иммунохимическими методами. Затем фрагментация альбумина в канальцах снижается, причем она обратно пропорциональна экскреции альбумина с мочой [698].

Кроме того, профильтровавшийся альбумин может реабсорбироваться клетками проксимальных канальцев путем рецепторзависимого эндосапо. Нарушение этого процесса также может приводить к повышению экскреции альбумина с мочой [56].

У больных с сахарным диабетом была выявлена взаимосвязь микроальбуминурии с изменениями фактора Виллебранда, фибриногеном, тромбомодулином и ингибитором 1 активатора плазминогена. Это позволило предположить, что нарушение работы свертывающей и фибринолитической систем при сердечно-сосудистых заболеваниях также может способствовать развитию альбуминурии [429].

У больных с ХСН распространенность, механизм повышения экскреции альбумина с мочой, взаимосвязь альбуминурии с выраженною клинической симптоматикой изучены недостаточно. Кроме того, при ХБП СКФ и альбуминурия оказывают прогностическое влияние на отдаленные почечные исходы, но при ХСН это продемонстрировано не было [407, 886].

Канальцевый аппарат у больных с ХСН

Клубочковая фильтрация является ключевым звеном детоксикационной функции почек [926]. Поддержание водно-электролитного баланса – другая важная функция почек, зависящая от функции канальцев [925]. Да-
же при значительном снижении СКФ до 15 мл/мин/1,73м² 21,6 л плазмы в сутки продолжает фильтроваться. Это значительно больше, чем суточное количество мочи, что свидетельствует о существенном вкладе канальцевой реабсорбции в объемный гомеостаз. Как и снижение СКФ, повреждение канальцев ассоциировано с неблагоприятным исходом при стабильной СН и при декомпенсации СН. Тем не менее биомаркеры почечного повреждения лишь умеренно повышаются при декомпенсации СН, гораздо меньше, чем при прямом почечном повреждении, например при контрастной нефропатии [300, 923].

Новые биомаркеры функции и повреждения почек

Недавно новые маркеры функции и повреждения почек, такие как цистатин С (CysC), желатиназа-связанный липокалин нейтрофилов (NGAL), молекула повреждения почек 1 (KIM-1), N-ацетил-β-D-глюкозаминидаза (NAG), были определены при ХСН[249, 250, 258, 682, 885]. Во многих, но не во всех, этих исследованиях уровни этих маркеров были умеренно повышены при ХСН по сравнению с группой контроля, даже у пациентов с явно нормальной функцией почек. Некоторые из этих маркеров, по-видимому, имеют некоторое прогностическое значение в отношении неблагоприятных сердечнососудистых событий, но ни в одном из исследований не оценивалось изменение функции почек в отдаленном периоде как исход [251].

Цистатин С представляет собой ингибитор сериновых протеаз с низкой молекулярной массой (13кDa), который высвобождается из различных ядросодержащих клеток с относительно постоянной скоростью и свободно фильтруется клубочками. Предполагалось, что цистатин С сыворотки оказывается более чувствительным маркером нарушения клубочковой фильтрации, чем креатинин[546].

Однако цистатин С не является специфичным маркером функции почек. У пожилых его уровень снижается значительно больше, чем уровень креатинина [836]. Физиологически цистатин С является модулятором
иммунного ответа и его уровень в сыворотке коррелирует с С-реактивным белком и может зависеть от иммуносупрессивной терапии [328]. Другие факторы, в т.ч. сахарный диабет, дисфункция щитовидной железы, высокие дозы глюкокортикоидов, сердечно-сосудистая патология, могут влиять на уровень цистатина С [775, 788]. Для повышения его диагностической ценности разработаны формулы для расчета СКФ, основанные на концентрации этого вещества. Но они требуют дальнейшего изучения, в т.ч. при ХСН.

Недавно было показано, что цистатин С крови является независимым предиктором смертности, трансплантации сердца и госпитализаций по поводу СН [885]. Была выявлена взаимосвязь цистатина С крови с повреждением миокарда, уровнем NT-pro-BNP и дисфункцией желудочек [544, 545, 568, 885]. Исследований, оценивающих уровень цистатина С в моче, при ХСН в настоящее время недостаточно [251]. Взаимосвязь уровня цистатина С с продолжительностью госпитализаций у больных с ИБС, ХСН и ОСН не выявлена [196]. Однако пациенты (n=240) с уровнем цистатина, соответствующем верхней квартили, имели повышенный риск смерти и смерти/повторных госпитализаций [201]. В 2 исследованиях цистатин показал себя как предиктор, более сильный, чем привычные маркеры функции почек [603, 666]. Lassus и соавт. показали, что уровень цистатина выше медианы (1,3 мг/дл) был ассоциирован с HR 3,2 со смертностью при ОСН [544]. При комбинации цистатина С с NT-Pro-BNP предсказательная ценность их увеличивалась. Более того, у больных с нормальным креатинином в плазме повышение цистатина было связано с увеличением смертности в течение ближайших 12 месяцев. Однако эти исследования выполнены на малом количестве больных, их результаты нуждаются в подтверждении [196].

Еще одним новым маркером повреждения почек является желатина-за-связанный липокалин нейтрофилов (NGAL). NGAL, белок в молекулярной массой 25 кDa, вырабатывается и секретируется иммунными клетками,
гепатоцитами и клетками почечных канальцев при различных патологических состояниях[594]. Экспериментальные и клинические исследования показали, что экспрессия NGAL повышается в сердце при CH и миокардите, а также в атеросклеротических бляшках. В клинических исследованиях уровень NGAL в крови и моче коррелировал с креатинином или рСКФ, а также с клиническими и биохимическими маркерами (например, НУП) и в некоторых, но не во всех, исследованиях – с тяжестью CH [250]. Уровень NGAL крови также был взаимосвязан с повышением смертности и частоты госпитализаций по поводу CH [172, 251, 839]. Аналогичные результаты опубликованы для KIM-1 и NAG. KIM-1 - гликопротеин, экспрессируемый проксимальными канальцами при повреждении почек. Его наличие у больных с CH и его корреляция NT-proBNP свидетельствуют о том, что повреждение почек присутствует у многих больных с тяжелой CH[237]. Уровень KIM-1 в моче, но не NAG или NGAL, повышается по сравнению с контролем при клинически явной CH [490]. Уровни KIM-1 и NAG коррелировали с тяжестью CH, и являлись предикторами общей смертности и госпитализаций по поводу CH[255, 256, 258]. У 2130 пациентов, участвовавших в исследовании GISSI-HF, с комбинированной конечной точкой смертности и госпитализации по поводу CH были значительно ниже рСКФ и значительно повышеены экскреция с мочой альбумина, NGAL, KIM-1 и NAG[255, 256, 258, 259]. В многофакторном регрессионном анализе показана сильная взаимосвязь конечной точки с NAG мочи [251].

Квесцин 6 (QuiescinQ6, QSOX1) – белок, участвующий в образовании дисульфидных мостиков. По результатам широкомасштабных геномных исследований он (наряду с BNP) оказался связанным с ОДСН. В настоящее время ведется изучение его биологического значения и целесообразности клинического использования [184, 633, 724].

В целом, информация о новых биомаркерах поражения почек ограничена. Она расширяет наше понимание патофизиологии КРС 2 типа. Эти
биомаркеры целесообразно оценивать в крупных рандомизированных исследованиях больных с СН. Например, в исследовании переносимостиантагонистов минералкортикоидных рецепторов (ARTS) оценивается влияние нестероидного антагониста минералкортикоидных рецепторов BAY 94-8862 на кардиальные и почечные биомаркеры, включая НУП, KIM-1, NGAL и CysC[727]. Однако клиническое применение новых биомаркеров ограничено.

Патогенез поражения почек у больных с ХСН

До настоящего времени механизм поражения почек у больных с СН окончательно не изучен [3, 58, 70, 75, 174, 251]. Считается, что оно обусловлено снижением сердечного выброса (СВ), хронической гипоперфузиею почек, венозным застоем и повышением внутрибрюшного давления, нейрогуморальной активацией, воспалением и оксидативным стрессом, развитием апоптоза и фиброза [251, 270, 844].

Гемодинамические механизмы

Долгое время считалось, что основной причиной поражения почек при СН является снижение сердечного выброса (СВ). Оно приводит к снижению почечного кровотока [182, 478]. У здоровых лиц при этом вследствие уменьшения давления крови на стенки приносящих артериол и уменьшения доставки натрия к восходящей части петли Генле происходит расслабление гладких мышц приносящих артериол и восстановление почечного кровотока (миогенный эффект Бейлиса и механизм тубулоломе-рулярной обратной связи соответственно). У больных с ХСН эти механизмы адекватно не препятствуют снижению кровотока в сосудах почек, что приводит к развитию ишемии и повреждения ткани почек [843].

Однако имеются данные, что СКФ при ХСН с сохраненной систолической функцией ЛЖ сравнима с таковой при сниженной ФВ ЛЖ[158]. Кроме того, в одном из исследований прямой взаимосвязи между большинством инвазивно измеренных гемодинамических показателей, в т.ч. СВ ЛЖ, и креатинином сыворотки крови выявлено не было [677]. Следо-
вательно, только снижением сердечного выброса и гипоперфузии почек объяснить поражение почек у больных с СН невозможно.

В последние годы большое значение в развитии снижения функциональной способности почек отводят повышению внутрибрюшного и центрального венозного давления (ЦВД). Повышение ЦВД приводит к снижению фильтрационного давления в капиллярах клубочков и способствует снижению СКФ [548]. Так, у собак с почечной венозной гипертензией, независимо от системного АД, показано снижение почечного кровотока и СКФ, а также повышение концентрации ренина, что доказывает активацию РААС при венозной гипертензии и застое, не обусловленную снижением ОЦК [514]. Повышение центрального и почечного венозного давления также приводит к перерастяжению венул вокруг дистальных отделов нефрона, что способствует компрессии канальцев, повышению давления в канальцах и обратному поступлению фильтрата в интерстиций. Повышение давления в интерстиции увеличивает венозный застой и гипоксию интерстиция. В клинических исследованиях повышение ЦВД было взаимосвязано с ухудшением функции почек, развитием протеинурии и канальцевой дисфункции [657]. Повышение внутрибрюшного давления также было взаимосвязано с нарушением функции почек [649, 658]. Эти данные поставили под сомнение основную роль снижения СВ в развитии поражения почек при СН и доказали, что повышение венозного и внутрибрюшного давления могут быть важными составляющими нарушения функционального состояния почек у больных с СН, превосходящими системное АД, ДЗЛК и СВ (СИ)[548].

Как известно, снижение сердечного выброса (или общего периферического сосудистого сопротивления – ОПСС) при СН воспринимается механизмами ЛЖ, каротидного синуса, дуги аорты и приносящих артериол почек как недонаполнение артериального сосудистого русла. Это приводит к активации симпатоадреналовой системы (САС) и РААС, а также избыточной продукции вазоконстрикторных медиаторов (эндотелина,
вазопрессина) [810, 812]. Под влиянием этих факторов, несмотря на избыток внеклеточной жидкости, почки продолжают задерживать натрий и воду [810, 812]. Сначала это способствует сохранению внутрисосудистого объема и поддержанию экскреторной функции почек [785, 786], однако затем приводит к развитию венозного застоя и поражению почек [154].

Роль RAAS в патогенезе поражения почек при ХСН

Механизм воздействия активации RAAS на почки многообразен. Известно, что ангиотензин II, воздействуя на рецепторы 1 типа, усиливает реабсорбцию натрия путем активации $\text{Na}^+/\text{K}^+\text{-ATF-азы и Na}^+$-бикарбонатного котранспортера в клетках проксимальных канальцев, Na^+/K^+-нормоса в клетках толстой части восходящего колена петли Генле и Na^+-каналов в главных клетках собирательных трубочек [141, 362, 596]. Это способствует задержке жидкости и развитию отечного синдрома.

Ангиотензин II приводит к спазму артериол клубочков и, следовательно, снижению почечного кровотока. Сужение выносящих артериол превалирует над сужением приносящих, поэтому на ранних стадиях ХСН, несмотря на снижение почечного кровотока, повышаются почечное перфузионное давление и фильтрационная фракция (ФФ) и сохраняются нормальные значения СКФ [596, 812]. Таким образом, с одной стороны, этот механизм способствует поддержанию СКФ. С другой стороны, гиперфильтрация может приводить к повреждению ткани почек. Кроме того, гиперфильтрация способствует снижению гидростатического, повышению онкотического давления в перитубулярных капиллярах и усилиению реабсорбции воды в проксимальных канальцах и восходящей части петли Генле [596]. При прогрессировании ХСН и дальнейшем падении сердечного выброса почечный кровоток уменьшается настолько, что снижаются почечное перфузионное давление, ФФ, СКФ и увеличивается концентрация креатинина в сыворотке крови [76, 154, 431, 605].

Повышая внутриклубочковое давление, проницаемость базальной мембраны клубочков и способствуя потере ее отрицательного заряда, уве-
личение уровня ангиотензина II способствует развитию альбуминурии и протеинурии. Персистирование протеинурии играет ключевую роль в развитии глomerулосклероза и интерстициального фиброза. Это объясняется тем, что избыточное поступление плазменных белков в просвет канальцев при повышении проницаемости клубочкового фильтра ведет к усилению их реабсорбции клетками эпителия проксимальных канальцев, накоплению белков в цитоплазме клеток канальцев, что, в конечном счете, приводит к набуханию и разрушению лизосом, разрыву базальных мембран канальцев и поступлению плазменных белков в интерстиций. Попадание альбумина, трансферрина, липопротеинов и комплемента в интерстиций вызывает активацию воспалительных и вазоактивных генов, секрецию медиаторов воспаления. Одним из таких веществ является моноцитарный хемоаттрактантный белок-1 (метаболический синдромР-1) - мощный хемоаттрактант для моноцитов, лимфоцитов, RANTES-хемоаттрактантный белок, относящийся к классу малых цитокинов, которые активируют экспрессию и секрецию T-клеток, важным хемоаттрактантом (для моноцитов) является остеопонтин - матричный гликопротеин, выделяемый костной тканью. Предполагается, что все они, обладая мощными хемоаттрактантными свойствами, привлекают моноциты и T-лимфоциты в интерстициальное пространство, что в свою очередь ведет к активации фибробластов, синтезу внеклеточного матрикса, далее - к расширению внеклеточного матрикса и развитию нефросклероза – морфологического субстрата ХПН[32].

Кроме того, ангиотензин II, как показано в экспериментах на животных, вызывает гиперплазию мезангиальных клеток клубочков, стимулирует продукцию ими трансформирующего фактора роста β, под действием которого увеличивается синтез компонентов внеклеточного матрикса, таких, как бигликан, коллаген I типа и фибронектин [491]. Накопление клубочкового матрикса также приводит к развитию гломерулосклероза[613]. Ангиотензин II, вызывая вазоконстрикцию околосанальцевых сосудов и
развитие ишемии, приводит к активации фибробластов с накоплением продуктов внеклеточного матрикса и развитию склероза интерстиция [32].

Альдостерон, синтез и высвобождение которого усиливаются ангиотензином II[596, 812], способствует реабсорбции натрия на уровне дистальных канальцев и собирательных трубочек [76, 270]. Следует заметить, что в норме высокие дозы минералкортикоидов сначала увеличивают задержку натрия почками и объем внеклеточной жидкости, однако через 3-5 дней задержка натрия почками прекращается и натриевый баланс восстанавливается. Это так называемый механизм ускользания от минералкортикоид-опосредованной задержки натрия (escapephenomenon), развитие которого обусловлено увеличением доставки натрия в места действия альдостерона в собирательных трубочках [812]. У больных с ХСН ускользания от натрійсберегающего действия альдостерона не происходит. Это обусловлено снижением поступления натрия к дистальным канальцам и собирательным трубочкам из-за повышения его реабсорбции под действием ангиотензина II и α-адренергической стимуляции [97, 596, 812]. Кроме задержки натрия, альдостерон способствует разрастанию соединительной ткани у больных с ХСН, что вносит вклад в развитие нефросклероза [760].

Активация РААС способствует развитию оксидативного стресса, т.к. ангиотензин II активирует NADPH-оксидазу, которая приводит к формированию активных радикалов кислорода (АРК) [175]. Помимо вышесказанного, ангиотензин II непосредственно с помощью ядерного фактора каппа В (NF-κВ) может индуцировать экспрессию провоспалительных генов, что запускает продукцию хемотаксических и адгезивных молекул, способствует развитию воспаления, апоптоза, фиброза и тем самым усиливает поражение почек [175, 412, 761, 787].

Повышение уровня альдостерона также способствует развитию оксидативного стресса путем повышения концентрации галектина-3 и профибротического цитокина TФР-β, что способствует повышению фибронектина, приводя к развитию почечного фиброза и гломерулосклероза. При-
чем ингибиторы АПФ и антагонисты альдостерона (эплеренон) уменьшали выраженность оксидативного стресса, предотвращали появление гистологических признаков повреждения почек и снижали креатинин и протеинурию у экспериментальных животных [693].

Роль САС в патогенезе поражения почек при ХСН

Активация симпатической нервной системы тоже оказывает влияние на работу почек у больных с ХСН. Активность САС при СН повышается непропорционально снижению экспрессии β1-адренорецепторов в миокарде, что приводит к снижению отношения β1/β2 и нарушению передачи сигналов рецепторами [185].

Стимуляция α1-адренорецепторов приводит к сужению этих сосудов и, следовательно, снижению почечного кровотока. Активация α-адренорецепторов в базальной мембране проксимальных канальцев приводит к увеличению реабсорбции натрия и воды [76]. Стимуляция β1-адренорецепторов в клетках юкстагломерулярного аппарата увеличивает выброс ренина и повышает активность РААС [270, 596].

Другие аспекты нейрогуморальной активации в генезе поражения почек при ХСН

Изменению работы почек при ХСН способствует антидиуретический гормон (АДГ, вазопрессин, аргинин-вазопрессин). В норме его секреция регулируется осморецепторами гипоталамуса и его высвобождение клетками задней доли гипофиза происходит в ответ на увеличение осмоляльности плазмы. У больных с ХСН нормальный механизм высвобождения АДГ нарушается и происходит его неосмотическое высвобождение в ответ на активацию барорецепторов артерий в условиях их недонаполнения даже при низкой осмоляльности плазмы [596]. Стимуляция V1 рецепторов к вазопрессину в гладкомышечных клетках сосудов приводит к вазоконстрикции, которая может способствовать усугублению дисфункции миокарда у больных с тяжелой ХСН [596]. Сосуды почек менее чувствительны к сосу-
досуживающему действию АДГ, чем сосуды другой локализации, т.к. он стимулирует образование в почках сосудорасширяющих простагландинов [76]. Активация V2 рецепторов приводит к увеличению количества водных каналов (аквапоринов 2) в апикальной мембране главных клеток собирательных трубочек и повышению реабсорбции воды [141, 596][164, 165].

На функцию почек также оказывают влияние эндотелины, концентрация которых при ХСН повышается [164, 165]. Они являются самыми мощными эндогенными вазоконстрикторами, способствуют развитию эндотелиальной дисфункции, оказывают положительное инотропное и хронотропное действие, влияют на водно-соляной обмен, активируют РААС и САС, способствуют развитию гипертрофии клеток, фиброза, воспаления, и, по-видимому, играют роль в ремоделировании сердца, повреждении клубочков и интерстиция почек[146, 164]. Увеличивая сопротивление сосудов клубочков, эндотелины способствуют снижению почечного кровотока, ФФ и СКФ [76]. Эндотелин-1 (преобладающая изоформа эндотелина) оказывает вазоконстрикторное действие посредством рецепторов типа А. Рецепторы типа В имеют одинаковое сродство ко всем формам эндотелина и приводят к вазодилатации эндотелиальных клеток и вазоконстрикции гладкомышечных клеток [374].

Аденозин представляет собой важный внутрипочечный медиатор ухудшения функции почек и диуретикорезистентности. При гидролизе АТФ в межклеточное пространство высвобождается свободный аденозин, который действует на рецепторы аденозина A1 в приносящих артериолах и приводит к их сокращению со снижением почечного кровотока и СКФ, что способствует высвобождению ренина. Кроме того, активация рецепторов аденозина A1 в клетках проксимальных канальцев увеличивает проксимальную канальцевую реабсорбцию натрия, что также приводит к снижению диуреза [913]. Высвобождение аденозина происходит при повышении доставки натрия к дистальным канальцам, где он воспринимается клетками maculadensa; поэтому аденозин действует по механизму обратной связи.
для избежания чрезмерного диуреза. Концентрация аденоznина при ХСН увеличивается [353]. При острой декомпенсации СН после интенсивной диуретической терапии высвобождение аденоznина способствует снижению СКФ и уменьшает натрийуриетический ответ на фуросемид [548].

Неблагоприятному влиянию продуктов нейрогуморальной активации на ранних стадиях ХСН препятствует ряд веществ, оказывающих нефропротективное воздействие. К ним относятся эндогенные вазодилатирующие факторы: натрийуриетические пептиды (НУП), простагландины Е2 и І2, оксид азота [3, 7, 76, 154, 431, 596, 605, 810-812].

Натрийуриетические пептиды: предсердный (пНУП), мозговой (мНУП), С-натрийуриетический пептид и уродилатин, – расширяют проносящие и суживают выносящие артериолы, повышая почечный кровоток и СКФ [13];[164, 165]. Также НУП ингибируют реабсорбцию натрия и воды, вызванную действием ангиотензина II на проксимальные канальцы, препятствуют действию АДГ на кортикальные отделы собирательных трубочек и ингибируют реабсорбцию натрия в медуллярных отделах собирательных трубочек. Кроме того, пНУП может ингибировать секрецию ренина и альдостерона [596].

У больных с ХСН концентрация НУП повышается, коррелируя с тяжестью заболевания. На начальных этапах ХСН способствует сохранению функции почек, но затем, несмотря на выработку НУП, развивается феномен ускользания от его действия. Резистентность к НУП, аналогично механизму ускользания от минералкортикоид-опосредованной задержки натрия, может быть обусловлена снижением поступления натрия к собирательным трубочкам вследствие падения СКФ или увеличения проксимальной реабсорбции натрия [596, 812]. Кроме того, резистентность к НУП может быть связана с разрушением проксимальными эндопептидазами.

Простагландины Е2 и І2, выработка которых компенсаторно увеличивается при ХСН в ответ на увеличение плазменной концентрации сосудосуживающих веществ, оказывают вазодилатирующее действие, увеличи-
чивают почечный кровоток и натрийурез [164, 165, 167]. Низкие концентрации простагландинов Е2 снижают реабсорбцию воды под влиянием АДГ [76].

Оксид азота (NO, эндотелий расслабляющий фактор) является еще более сильным вазодилататором, чем простагландини Е2 и І2. Окись азота ингибирует сократительную функцию гладкой мускулатуры сосудов, расслабляя их, угнетает пролиферацию миоцитов, агрегацию и адгезию тромбоцитов, взаимодействует с холестерином в составе липопroteинов низкой плотности. NO играет важную роль в регуляции объема внеклеточной жидкости почками посредством вазодилатации, натрийуреза и десенситизации механизма тубULOинтерстициальной обратной связи. Показано, что у больных с ХСН может снижаться активность NO-синтазы, что приводит к снижению выработки NO[164, 165]. Дисрегуляция NO считается основным фактором эндотелиальной дисфункции у больных с СН. Keilstein и соавт. показали наличие взаимосвязи между снижением перфузии почек, нарушением NO-опосредованной эндотелиальной вазодилатации и высокой концентрацией эндогенного ингибитора NO-синтазы – асимметричного диметиларгинина – у больных с ХСН [35]. Увеличение активности NADPH-оксидазы под действием ангиотензина II приводит к инактивации NO. Это еще один потенциальный механизм эндотелиальной дисфункции при СН [168]. Кроме того, повышение ФНО при ХСН и ХБП может приводить к снижению активности NO-синтетазы и увеличению скорости апоптоза эндотелиальных клеток [412].

Со временем нефропротективное действие натрийуретических пептидов, простагландинов и оксида азота истощается, что способствует развитию нарушений почечной гемодинамики и функционального состояния почек [76, 154, 431, 605].

Т.е., по-видимому, компенсаторные нейрогуморальные механизмы оказывают маладаптивными в долгосрочном отношении. Задержка натрия и воды почками приводит к еще большему ухудшению функции
сердца, а это, в свою очередь, способствует еще большему нарушению функции почек. Замыкается порочный круг, приводящий к прогрессированию ХСН и развитию поражения почек [171].

Оксидативный стресс, воспаление, апоптоз

Наряду со снижением сердечного выброса, венозным застоем и нейрогуморальными влияниями, основными звеньями, участвующими в развитии поражения почек при ХСН, являются оксидативный стресс, активация системы воспаления и апоптоз [175].

В последние годы было доказано наличие оксидативного стресса, ассоциированного с повышением продукции активных радикалов кислорода (АРК) и снижением уровня антиоксидантов, при ХПН, ХСН и КРС [412, 424]. Так, в миокарде крыс, перенесших инфаркт, выявлено снижение антиоксидантной активности, которое тесно связано с прогрессированием СН [428]. У больных с ХСН отмечено улучшение антиоксидантного состояния при применении каптоприла, празозина и пропранолола, что также подтверждает развитие оксидативного стресса при этом заболевании [509, 510].

Развитию оксидативного стресса может способствовать активация РААС, т.к. ангиотензин II активирует NADPH-оксидазу, которая, как было показано в эндотелиальных, гладкомышечных клетках, кардиомиоцитах и клетках почечных каналцев, приводит к формированию АРК. Доказательства повышения активности NADPH-оксидазы и высвобождения АРК были получены в сердце больных с конечной стадией заболевания почек, а также в клубочках почек соль-чувствительных крыс с ХСН. Причем у последних ингибиторы ангиотензин-превращающего фермента (АПФ) снижали высвобождение АРК [175]. Также, по данным экспериментальных исследований, повышенной продукции АРК может способствовать активация САС [125].

Неблагоприятное воздействие оксидативного стресса на почки связано с повреждениями ДНК, белков, углеводов и липидов [646, 952]. Со-
гласно экспериментальным данным, АРК приводят к пролиферации клеток внутрипочечных кровеносных сосудов и, следовательно, прогрессированию нарушений кровоснабжения почек, а также запускают проапоптотический каскад в клетках проксимальных каналцев [160, 163, 175]. Оксидативные повреждения каналцев и интерстиция препятствуют работе механизмов обратной связи, вовлеченных в секрецию ренина [175]. Это может способствовать усилению активности РААС и ее неблагоприятного воздействия на почки. Кроме того, АРК в условиях оксидативного стресса у крыс *invivo* и *invitro* увеличивают активность преганглионарных симпатических нейронов [563, 838]. То есть, оксидативный стресс может способствовать нарушению функционального состояния почек и непосредственно, и путем активации нейрогуморальных систем [175].

Помимо оксидативного стресса к повреждению почек при ХСН приводит воспаление [175, 251, 953, 954]. В условиях механической перегрузки и ишемии кардиомиоциты способны производить большое количество цитокинов и обеспечивать иммунный ответ [235]. Кроме того, венозный застой увеличивает абсорбцию токсинов в кишечнике, усиливающая воспалительный ответ [236]. У больных с ХСН было обнаружено повышение уровней таких маркеров, как С-реактивный белок (С-РБ), интерлейкин-1 (ИЛ-1), ИЛ-1β, ИЛ-6, ИЛ-18, молекулы клеточной адгезии, фактор некроза опухоли альфа (ФНО-α) и растворимые рецепторы к нему, в плазме и в миокарде, а также взаимосвязь этих маркеров с тяжестью и прогрессированием заболевания [181, 251, 920]. Для уточнения вклада медиаторов воспаления в генез поражения почек и других органов-мишеней при ХСН требуется проведение дальнейших экспериментальных и клинических исследований.

К активации системы воспаления могут приводить АРК. Они способствуют продукции провоспалительных цитокинов, привлечению и активации лейкоцитов[174, 175]. Ангиотензин II повышает тканевой уровень активированного ядерного фактора каппа В (NF-κВ), индуцирует экспресс-
сиян ФНО-α, ИЛ-6, хемоаттрактантного белка моноцитов (метаболический синдромР-1) [175, 787]. СНС тоже может приводить к активации системы воспаления посредством норадренalin-опосредованной продукции цитокинов в печени и сердце. Доказательством этого служит уменьшение экспрессии генов миокардиальных цитокинов под действием β-адреноблокаторов после экспериментального инфаркта миокарда[174, 175]. Кроме того, СНС может способствовать активации макрофагов и высвобождению цитокинов посредством нейропептида Y. Высокий уровень этого пептида обнаружен у больных с ХСН. Он участвует в длительной вазоконстрикции, действует как фактор пролиферации сосудов, приводящий к образованию новой интимы, а также влияет на иммунный ответ, изменяя высвобождение цитокинов и функцию иммунных клеток [175, 652]. Т.е. нейропептид Y может приводить к усилению гипоксии и активации системы воспаления.

Оксидативный стресс и воспаление в почках могут способствовать развитию структурных повреждений и фиброза, но прямых доказательств этого в настоящее время не достаточно[251, 312, 551, 584]. Для подтверждения участия оксидативного стресса и хронического воспаления в развитии поражения почек у больных с ХСН требуются дальнейшие исследования [175].

Анемия

В последние годы возрастает интерес к патогенетической роли относительного или абсолютного дефицита эритропоэтина в развитии дисфункции почек при ХСН, который может объясняться снижением его секреции в почках и приводить к развитию анемии. Воспаление при ХСН может способствовать развитию анемии за счет разных патогенетических механизмов, в т.ч. за счет угнетения эритропоэза и вследствие повышения содержания пептида печени гепсидина. Он уменьшает всасывание железа в кишечнике и уменьшает высвобождение железа из гепатоцитов и макрофагов. Нарушение выведения гепсидина почками может утяжелить ситуа-
цию и усложнить взаимосвязь между сердечной, почечной недостаточностью, анемией и воспалением [412, 974]. Наличие анемии при ХСН оказывает неблагоприятное влияние на прогноз [444, 482].

Активация рецепторов к эритропоэтину в сердце может защищать его от апоптоза, фиброза и воспаления. Предварительные клинические исследования показали, что препараты, стимулирующие эритропоэз, приводят к улучшению функции сердца, уменьшению размера ЛЖ и снижению уровня ВНР у больных с ХСН, ХБП и анемией, но для подтверждения этого необходимы дальнейшие исследования [706].

Несмотря на ряд проведенных исследований, информация о распространенности анемии при ХСН противоречива. Для доказательства значимости анемии в патогенезе поражения почек при ХСН необходимы дальнейшие исследования.

Другие возможные патогенетические факторы поражения почек при ХСН

Некоторые исследователи расценивают эпизоды острой декомпенсации СН как факторы, предрасполагающие к прогрессированию СН и поражению почек [251]. Это доказывается тем, что количество предшествующих госпитализаций по поводу ХСН было сильным предиктором смертности [827]. Долгосрочное наблюдение за 70 пациентами с ДКМП показало, что частота госпитализаций по поводу ХСН была независимо взаимосвязана с развитием ХБП [883]. Аналогично на моделях животных и в эпидемиологических исследованиях было показано отрицательное влияние эпизодов острого повреждения почек на развитие и прогрессирование ХБП [212, 251].

Еще одним патогенетическим звеном, участвующим в развитии поражения почек при СН, может являться атеросклероз. С одной стороны патология почек и снижение их функциональной способности – известный фактор риска развития атеросклероза. С другой стороны, атеросклероз может приводить к развитию дисфункции почек и в ряде случаев ишемиче-
ской болезни почки. В связи с этим атеросклероз и патология почек могут взаимоусиливать друг друга и способствовать прогрессированию кардиоренального синдрома [412].

В некоторых работах среди механизмов развития дисфункции почек при ХСН указывают дислипидемию, нарушения коагуляционного и сосудисто-тромбоцитарного гемостаза [286, 622].

Таким образом, несмотря на большой интерес исследователей к поражению почек при ХСН, механизмы его развития нуждаются в дальнейшем изучении.

Влияние основных групп лекарственных препаратов, применяемых для лечения ХСН, на функцию почек

Фармакотерапия ХСН за последние 40 лет стремительно расширилась от диуретиков и диоксина до комбинированной терапии, включающей ингибиторы ангиотензинпревращающего фермента (ингибитор АПФ), β-блокаторы (β-АБ), антагонисты минералкортикоидных рецепторов, антагонисты рецепторов ангиотензина (ARA) и др.[532]. Функция почек может изменяться под действием различных лекарственных средств[486]. Однако, к сожалению, о влиянии лекарственных препаратов, применяемых для лечения ХСН, на функцию почек сообщается не во всех исследованиях [197, 270, 605].

Ингибиторы ангиотензинпревращающего фермента

Ингибиторы АПФ, с одной стороны, оказывают нефропротективное действие, увеличивая почечный кровоток за счет дилатации приносящих артериол и увеличения сердечного выброса и блокируя неблагоприятное воздействие на почки ангиотензина II [786]. При длительном применении ингибиторов АПФ дилатация выносящих артериол предотвращает гиперфилтрацию и, следовательно, защищает почки от ее неблагоприятных последствий [425]. Однако вызываемое ингибиторами АПФ расширение выносящих артериол может способствовать уменьшению почечного перфу-
ционного давления и фильтрационной фракции[270, 617, 671] и, следовательно, ухудшению функции почек [89, 270].

У большинства пациентов с ХСН, несмотря на дилатацию выносящих артериол, СКФ на фоне применения ингибиторов АПФ остается стабильной благодаря увеличению почечного кровотока [270, 617]. Изменение концентрации креатинина в сыворотке крови в большинстве крупномасштабных контролируемых исследований по применению ингибиторов АПФ у больных с ХСН были сравнимы с плацебо, или лишь недостоверно превышали их. Только в исследовании SOLVD было показано, что концентрация креатинина в сыворотке крови достоверно чаще увеличивается при назначении эналаприла, чем плацебо [89, 270].

Повышение уровня креатинина после назначения ингибиторов АПФ чаще выявляется в группе больных, которые больше всего нуждаются в их применении [148]. Отмена ингибиторов АПФ приводила к очень высокой смертности (57% в течение 8,5 месяцев) [515].

Длительное время ингибитор АПФ были противопоказаны при уровне калия в крови выше 5 ммоль/л и креатинина выше 220 мкмоль/л (2,5 мг/дл). При анализе 20902 участников программы Medicare старше 65 лет, госпитализированных с систолической дисфункцией (ФВ ЛЖ<40%), снижение смертности в течение 1 года на фоне лечения ингибитор АПФ было более значимым у больных с концентрацией креатинина в сыворотке крови >265 мкмоль/л (3мг/дл), чем у больных с концентрацией креатинина ≤265мг/дл (37% и 16% соответственно) [347]. В связи с этим АСС/АНА разрешает с осторожностью назначать ингибитор АПФ при уровне креатинина сыворотки крови >265 мкмоль/л и уровне калия крови >5,5 ммоль/л [457-459, 485]. В документах American Heart Association Council on the Kidney in Cardiovascular Disease говорится, что «не существует определенного уровня креатинина, при котором противопоказано назначение ингибиторов АПФ» [425].

По мнению большинства экспертов, ингибиторы АПФ или антагони-
сты рецепторов ангиотензина II можно назначать при концентрации креатинина в сыворотке крови <6 мг/дл (528 мкмоль/л) и СКФ≥20 мл/мин, однако перед началом лечения следует исключить наличие стеноза почечных артерий. У больных с СКФ<30 мл/мин лечение следует начинать в стационаре, где возможно ежедневное определение креатинина, калия и имеются средства для лечения ОПН[270, 592, 617].

Согласно современным рекомендациям ESC, если на фоне лечения ингибитор АПФ наблюдается увеличение креатинина в 2 раза по сравнению с исходным или до 265 мкмоль/л (3мг/дл), лечение продолжают. Если креатинин становится выше 265 мкмоль/л, но ниже 310 мкмоль/л (3,5 мг/дл) следует уменьшить дозу ингибитор АПФ вдвое и тщательно следить за биохимическими показателями крови. При увеличении уровня креатинина выше 310 мкмоль/л или развитии тяжелой гиперкалиемии необходимо немедленно отменить ингибитор АПФ[56, 57, 60, 280, 281, 837]. Причем для предотвращения гиперкалиемии при СН показал свою эффективность калийсвязывающий полимер RLY5016 [726].

АСС/АНА при развитии легкого и умеренного ухудшения функции почек на фоне ингибитор АПФ рекомендует снизить дозу назначенных диуретиков и продолжить прием ингибитор АПФ, а отменять ингибитор АПФ- лишь при выраженной дисфункции почек[457-459, 485]. ОССН/ВНОК при исходном или развивающемся на фоне терапии ингибитор АПФ ухудшении функции почек рекомендует заменить их на препараты, имеющие двойной путь выведения (фозиноприл, спираприл) [37, 39].

Выделены категории больных с ХСН и повышенным риском снижения функции почек при назначении ингибиторов АПФ. К ним относятся больные с распространенным атеросклерозом, реноваскулярной патологией, исходным нарушением функции почек, гипотензией, гипонатриемией, недавним снижением объема циркулирующей крови (рвотой, диареей), сахарным диабетом, получающие лечение другими вазодилататорами и диуретиками [154, 270]. Титрация дозы у этих больных должна проводиться
медленно под контролем концентрации креатинина в сыворотке крови [154, 270].

Нарушение функции почек, вплоть до развития преренальной азотемии, под влиянием ингибиторов АПФ в большинстве случаев связано с резким падением системного АД. Для его предотвращения необходимо начинать лечение с малых доз, давать первую дозу на ночь и отменять диуретики в первый день приема ингибиторов АПФ, избегать одновременного назначения нестероидных противовоспалительных препаратов [617].

Однаково ли влияние различных препаратов из групп ингибиторов на функцию почек у больных с ХСН изучено недостаточно.

Антагонисты рецепторов ангиотензина II

Ранее считалось, что антагонисты рецепторов ангиотензина II (АРА II) практически не оказывают негативного воздействия на почечную функцию и существенно превосходят по этому показателю безопасности традиционные ингибиторы АПФ. В исследовании ELITE, в котором сравнивали эффекты каптоприла в высокой дозе 150 мг/сут и лозартана (50 мг/сут) у больных старше 65 лет с ХСН II-IV ФК NYHA, влияние этих препаратов на функцию почек практически не различалось. [729]. Увеличение сывороточного креатинина на ≥26,5 мкмоль/л (0,3 мг/дл) как при приеме лозартана, так и при приеме каптоприла встречалось у 10,5% пациентов. А вот отменялся каптоприл из-за нарастания азотемии даже реже, чем лозартан, лишь у 0,8% больных против 1,4% [4, 834]. Аналогичные данные были получены в исследовании ELITE II [728].

В исследовании VALHEFT наблюдалось незначительное снижение СКФ в группе валсартана по сравнению с плацебо (-3,9). Наличие протеинурии было ассоциировано с увеличением риска смертности на 28% [126].

В исследовании CHARM-Added у больных с микро- и макроальбуминурией отмечалось повышение риска смерти на 62 и 76% соответственно, причем кандесартан не предотвращал развитие протеинурии [479].
β-адреноблокаторы

β-АБ, как и ингибитор АПФ, необходимы всем больным ХСН независимо от этиологии и степени выраженности заболевания, за исключением тех больных, которым β-АБ противопоказаны (степень доказанности А, класс рекомендаций I). Показано, что у больных с артериальной гипертензией под действием β-адреноблокаторов, за исключением новых поколений, повышается реабсорбция натрия и приблизительно на 10% снижается перфузия почек[270, 535, 808]. Одинаково ли влияние на почечную гемодинамику различных β-адреноблокаторов, в настоящее время не установлено. Этому вопросу посвящены всего несколько исследований [270]. В одном из них было показано, что у реципиентов почечного трансплантата карведилол увеличивал почечный кровоток лучше, чем метопролол [270].

У больных с ХСН начало лечения β-адреноблокаторами сопровождается падением сердечного выброса, что может привести к снижению почечного кровотока и, следовательно, ухудшению функции почек. При длительном применении β-адреноблокаторов фракция выброса увеличивается, что может способствовать повышению почечного кровотока даже выше исходного[834].

В крупномасштабных исследованиях по применению β-адреноблокаторов у больных с ХСН мало данных об их влиянии на функцию почек[270] и редко приводится анализ подгрупп, выделенных на основании состояния функции почек [834]. В одном обсервационном исследовании, в котором оценивалась влияние этих препаратов на выживаемость после перенесенного инфаркта миокарда у больных с дисфункцией ЛЖ, было показано их благоприятное воздействие на выживаемость среди больных с уровнем креатинина в сыворотке как выше, так и ниже 175 мкмоль/л (2,0 мг/дл)[835].

В мета-анализах исследований CAPRICORN и COPERNICUS карведилол у больных с ХБП был взаимосвязан с увеличением относительной частоты транзиторного повышения креатинина сыворотки, не требовав-
шим диализа (4,6% по сравнению с 1,8% при назначении плацебо, р<0,001) [941]. В исследовании CIBIS бисопролол был более эффективен у больных с ХБП (СКФ<45) по сравнению с плацебо и на фоне него не было выявлено увеличения креатинина сыворотки[210]. Лечение небивололом у пожилых на СКФ не влияло [233].

В общем данные по влиянию β-адреноблокаторов на креатинин в этих исследованиях противоречивы[251]. Необходимы дальнейшие исследования и тщательное мониторирование проявлений дисфункции почек при назначении препаратов этой группы больным с ХСН [270].

Мочегонные препараты

Несмотря на то, что диуретики в течение многих лет широко используются при наличии застойных явлений при острой декомпенсации СН [340] и считалось, что постоянная внутривенная инфузия диуретиков эффективнее, чем болюсное введение, лишь недавно рандомизированное исследование DOSE предоставило доказательства их применения. В это исследование было включено 308 больных с декомпенсацией СН. Показаны аналогичные исходы при назначении петлевых диуретиков болюсно по сравнению с постоянной инфузийей. Более того, назначение высоких (в 2,5 раза выше поддерживающих) по сравнению с низкими (равными поддерживающим) дозами петлевых диуретиков приводило к более быстрому уменьшению застоя, но большему снижению СКФ [327]. В связи с этим рекомендуется вводить диуретики в минимальных дозах, достаточных для оптимизации объемного статуса и уменьшения явлений застоя, не вызывающих чрезмерного снижения внутрисосудистого объема для избежания гипотензии и/или дисфункции почек [38]. Кроме того, ESC и ACC/AHA обращают внимание, что при снижении СКФ<30 мл/мин тиазидные диуретики мало эффективны и не рекомендуются. Исключением является назначение их для усиления эффекта петлевых диуретиков[280, 281, 457-460, 485, 875].
Взаимосвязь применения высоких доз диуретикову больных с ХСН с повышенным риском развития ухудшения функции почек[518, 949] объясняется, с одной стороны, тем, что из-за массивного диуреза гиповолемии происходит снижение почечного перфузионного давления и СКФ вплоть до развития преренальной ОПН [154, 197, 541, 605]. С другой стороны, у больных с дисфункцией почек часто появляется резистентность к диуретикам и потребность применения их в высоких дозах[197]. Причем эффективность петлевого диуретика, определяемая как объем мочи на дозу диуретика, недавно была выявлена в качестве важного прогностического предиктора при декомпенсации СН, независимого от исходной функции почек [848, 894].

Одной из основных причин диуретикорезистентности является снижение перфузии почек и плохое поступление диуретиков в места их действия (например, Na/K/2Cl котранспортёру толстой части восходящего колена петли Генле для петлевых диуретиков).[795]. Кроме того, при недостаточной перфузии почек по механизму тубулогломерулярной обратной связи увеличивается проксимальная реабсорбция натрия [925]. Недостаточные дозы мочегонных препаратов, повышенное потребление поваренной соли, снижение всасывания лекарственных препаратов в кишечнике, снижение секреции диуретиков канальцами, прием НПВС также способствуют развитию диуретикорезистентности. Кроме того, при хроническом применении диуретиков развивается гипертрофия дистальных канальцев, что приводит к увеличению реабсорбции натрия и тоже способствует диуретикорезистентности [537].

Существует ряд подходов к преодолению диуретикорезистентности[56, 57, 197, 740]. К ним относится переход от таблетированных форм препаратов к их внутривенному введению, увеличение дозы диуретика (введение дозы вдвое большей, чем предыдущая неэффективная доза), применение эквивалентных доз других диуретиков (то-расемида и бутаметана, которые лучше реабсорбируются из ЖКТ, чем фу-
росемид), комбинация петлевых и тиазидных диуретиков [449, 486, 617]. Тиазидные диуретики ингибитируют реабсорбцию натрия в дистальных канальцах и эффективны у больных гипертрофией их клеток из-за длительного лечения диуретиками [484]. Кроме того, они значительно увеличивают фракцию экскреции натрия, что необходимо для достижения нейтрального или отрицательного натриевого баланса при снижении СКФ [517]. Возможно внутривенное введение тиазидных диуретиков (гидрохлортиазида в дозе 250-500мг)[740].

Для снижения проксимальной реабсорбции натрия при развитии диуретикорезистентности целесообразно увеличить перфузию почек с помощью вазодилататоров и инотропов. Кроме того, проксимальная реабсорбция натрия непосредственно блокируется ацетазоламидом [517]. В исследовании больных с КРС CARRESS-HF последовательное добавление к терапии фуросемидом тиазидных диуретиков, вазодилататоров и инотропов было также эффективно в устранении застоя, как и ультрафильтрация [151].

При недостаточной эффективности указанных мероприятий возможно назначение бессолевого альбумина, поскольку при гипоальбуминемии больные плохо отвечают на диуретикотерапию. Это существенно увеличивает экскрецию натрия у таких больных [740].

Применение гипертонических растворов (150 мл 1,4 – 4,6% раствора натрия хлорида внутривенно капельно в течение 30 минут 2 раза в день в течение 6-12 дней) совместно с диуретиками в высоких дозах (фуросемидом 500-1000 мг) при рефрактерной XCHIV ФК приводило большому диуретическому и натрийуретическому эффекту, меньшей вероятности повторных госпитализаций по поводу СН и смертности в течение 31±14 месяцев, чем изолированное назначение диуретиков в высоких дозах[559, 740].

Допамин в низких (≤2мкг/кг/мин) дозах селективно улучшает почечный кровоток, активируя DA1 рецепторы. Это улучшает диурез и оказыва-
ет благоприятное влияние на функцию почек [309]. В клинической практике при диуретикорезистентности часто используют низкие (почечные) дозы допамина в сочетании с диуретиками, хотя имеющиеся данные клинических исследований четко не говорят о благоприятном воздействии его на почки. В гораздо большей степени он, как было показано, нарушает кинетику кислорода в почках, ингибитирует механизмы обратной связи, которые защищают почки от ишемии и, возможно, усугубляет повреждение канальцев почек [349]. Проспективное контролируемое двойное слепое рандомизированное исследование влияния низких доз допамина на показатели почечного сосудистого сопротивления показало, что они могут ухудшать перфузию почек при острой почечной недостаточности [740]. В исследовании DAD-HF (n=60) ухудшение функции почек чаще встречалось у больных, получавших высокие дозы диуретиков, чем у больных получавших низкие дозы диуретиков с допамином [372]. Несмотря на наличие данных о благоприятном влиянии допамина на диурез и функцию почек, необходимо подчеркнуть, что отсутствуют доказательства положительного влияния допамина на исходы. В настоящее время он не рекомендован с целью ренопротекции у больных застоем и необходимостью лечения диуретиками.

При неэффективности перечисленных мероприятий показана ультрафильтрация или диализ. Удаление изотонической жидкости в этих ситуациях приводит к улучшению клинического состояния, уменьшению отеков, внутрисердечного давления наполнения, улучшению функции миокарда и почек, снижению потребности в инотропной поддержке и уменьшению концентрации циркулирующих нейрогормонов [154, 239, 830]. У большинства больных это значительно увеличивает диурез и улучшает клиническое состояние [154].

В исследовании UNLOAD, в котором 200 больным рандомизированно проводили ультрафильтрацию или внутривенно назначали диуретики, показало, что в течение 48 часов ультрафильтрация приводила к большему
снижению веса и застойных явлений, чем диуретическая терапия. Более того, через 90 дней вероятность повторной госпитализации с явлениями СН, а также ее длительность и вероятность незапланированных визитов среди больных, которым проводилась ультрафильтрация, были значительно меньше, чем среди больных, которым назначались диуретики [740]. Сходные результаты получены в исследовании RAPIDCHF[908]. Эти данные несколько противоречат результатам более крупного исследования CARRESS-HF (n=2033), которое не выявило лучшей динамики застойных явлений и улучшения клинических исходов на фоне ультрафильтрации по сравнению с комбинированной диуретической терапией. Более того, в группе ультрафильтрации чаще наблюдались катетерсвязанные побочные явления и кровотечения. Кроме того, СКФ через 60 дней значительно в большей степени повышалась в группе фармакотерапии [151]. В связи с этим большинству пациентов рекомендуется адекватная диуретическая терапия, а применение ультрафильтрации рассматривается только в случае рефрактерного отечного синдрома [713]. Особенностью исследования CARRESS-HF является тщательная титрация доз диуретиков и постоянная скорость ультрафильтрации 200 мл/ч. Это могло приводить пациентов, получавших ультрафильтрацию к большему риску развития гиповолемии и гипотензии, которые могли сопровождаться нейрогуморальной активацией. Поэтому в будущих исследованиях ультрафильтрации при декомпенсации СН и КРС необходимо тщательно мониторировать АД и избегать эпизодов гипотензии. Возможно, при гибком индивидуально титруемом режиме ультрафильтрации будут выявлены ее преимущества перед медикаментозной терапией. Для подтверждения этого необходимы дальнейшие исследования [926].

Антагонисты альдостерона

Исследование RALES показало, что низкие дозы антагониста альдостерона спиронолактона у больных с тяжелой ХСН III-IV ФК NYHA уменьшают сердечно-сосудистую смертность на 30%[730]. Причем бла-
приятное влияние на выживаемость отмечалось в подгруппах больных с концентрацией креатинина в сыворотке крови выше и ниже 106 мкмоль/л (медианы) [834]. На фоне лечения спиронолактоном отмечалось небольшое, но значимое по сравнению с плацебо увеличение уровня креатинина сыворотки: у 17% по сравнению с 7%. Причем креатинин увеличивался приблизительно на 0,05-0,1 мг/дл через 1 год в группе спиронолактона без значительного изменения в группе плацебо. Концентрация калия крови фоне спиронолактона увеличивалась в среднем на 0,3 ммоль/л [270, 730]. Лишь у 2% больных, получавших спиронолактон, отмечалось развитие тяжелой гиперкалиемии (>6 ммоль/л). Однако пациенты, включенные в исследование, получали фуросемид в средней дозе 80 мг/сут, что могло снижать вероятность развития у них этого осложнения [834].

Широкое внедрение результатов исследования RALESв клиническую практику привело к учащению случаев развития тяжелой гиперкалиемии у больных с ХСН, особенно с высоким исходным уровнем креатинина в сыворотке крови или СКФ<60 мл/мин/1,73м² [365, 688, 803, 834]. В связи с этим при СКФ<30 мл/мин/1,73м² антагонисты альдостерона абсолютно противопоказаны, а при СКФ 30-60 мл/мин/1,73м² следует применять их с осторожностью в дозе не выше 25 мг/сут и тщательно контролировать уровень калия и креатинина в крови [67, 834].

В исследовании EPHESUS у больных с ХСН после ИМ на фоне лечения эплереноном креатинин увеличивался на 0,06 мг/дл через 1 год и на 4,6 мг/дл через 2 года наблюдения, тогда как в группе плацебо увеличивался лишь на 2,7 мг/дл [778, 980, 981]. Снижение маркеров синтеза коллагена (PINP, PICP, PIIINP) после лечения антагонистами альдостерона свидетельствует об их возможности подавления фиброза в различных органах и тканях, возможно, и в почках [979].

Сердечные гликозиды

Применение дигоксина при ХСН основывается главным образом на результатах исследования DIG [92, 433]. Группа DIG в двойном слепом
плацибо-контролируемом исследовании, в которое не включались больные с уровнем креатинина выше 265 мкмоль/л (3,0 мг/дл) и медиана уровня креатинина составила 115 мкмоль/л (1,3 мг/дл) у мужчин и 97 мкмоль/л (1,1 мг/дл) у женщин, показала, что он не влияет на выживаемость, но на 28% снижает частоту госпитализаций по поводу ХСН. Исследований, в которых бы оценивалась эффективность дигоксина в зависимости от функции почек, не проводилось. Поскольку клиренс этого препарата изменяется одновременно с СКФ, снижение функции почек может оказывать влияние на безопасность его применения. При назначении дигоксина следует учитывать клиренс креатинина, поддерживающая концентрацию дигоксина в сыворотке ниже 0,8нг/мл [654]. С целью безопасности у больных с ХСН и ХПН не рекомендуется начинать лечение с нагрузочных доз. В качестве поддерживающих у них следует использовать низкие дозы - 0,125 мг, возможно через день [834].

Дезагреганты

Применение даже малых доз аспирина, как и других нестероидных противовоспалительных препаратов (НПВП), у больных с ХСН связано с ухудшением исхода, потому что эти лекарственные средства блокируют синтез простациклина (ингибируют простагландинсвязанную вазодилатацию) и ослабляют эффект ингибиторов АПФ, диуретиков, спиронолактона и β-адреноблокатора с вазодилатирующими свойствами – карведилола [37, 116, 347]. Особенно высок риск неблагоприятного воздействия НПВП у больных со снижением почечного кровотока или почечной недостаточностью[834].

Хотя ряд обсервационных исследований выявил неблагоприятное взаимодействие между аспирином и ингибиторами АПФу больных с ХСН, мета-анализ 4 крупных плацебоконтролируемых исследований показал, что благоприятное влияние ингибиторов АПФ на выживаемость отмечается даже среди больных с ХСН пациентов, получавших аспирин[834]. С этой точки зрения теоретически более обоснованным выглядит применение
альтернативных дезагрегантов, которые не блокируют циклооксигеназу, таких как клопидогрель[37, 38, 834].

В исследовании WATCH было оценено лечение варфарином и дезагрегантами (аспирином и клопидогрелем) при ХСН. Показано, что назначение аспирина (а не клопидогреля) связано с большей частотой госпитализаций по поводу ухудшения ХСН, чем применение варфарина [610].

Это свидетельствует о необходимости избегать назначения НПВС при ХСН (за исключением раннего периода до 8 недель после перенесенного инфаркта миокарда), особенно при наличии дисфункции почек[38]. Замена аспирина на клопидогрель может быть показана для предотвращения дисфункции почек при необходимости антитромбоцитарной терапии [286].

Подходы к нефропротекции у больных с ХСН: лечение кардиоренального синдрома

Неблагоприятное влияние нарушения функции почек на прогноз при ХСН позволяет предположить, что специфическая нефропротективная терапия может замедлить прогрессирование ХБП и увеличить продолжительность жизни пациентов с ХСН [193, 834, 884]. Однако методы нефропротекции для больных с ХСН окончательно не разработаны [837], доказательная база по лечению ХСН у больных с сопутствующим поражением почек ограничена[83, 478]. Можно ли направления нефропротекции, доказавшие свою эффективность при ХБП, рекомендовать больным с ХСН и поражением почек, окончательно не установлено [741].

У больных с ХБП вопросам нефропротекции посвящено большое количество научных исследований. Было доказано, что развитие и прогрессирование ХБП замедляют:

1) строгий контроль АД (АД должно быть <140/90 мм рт.ст при оптимальной ЭАМ<10 мг/г, при более высокой степени альбуминурии/протеинурии <130/80 мм рт.ст. При этом следует избегать снижения систолического АД<120 мм рт.ст. У пожилых приемлемым САД следует
считать 140-160 мм рт.ст.[66, 480, 598]. Предпочтение при назначении гипотензивной терапии следует отдавать ингибиторам АПФ и АРАП, т.к. по данным исследований REIN, RENAAL, IDNT и др. у больных с диабетической и недиабетической нефропатией они достоверно снижали риск развития терминальной ХПН. Но при степени альбуминурии A0-A1 при ХБП ингибиторы АПФ и АРА II не обладают преимуществами по сравнению с другими группами гипотензивных средств [67];

2) контроль гликемии (целевое значение HbA1c<7% или 53 ммоль/л);

3) назначение ингибиторов АПФ или АРА II[94] – следует назначать больным с ХБП с целью нефропротекции даже при отсутствии АГ при альбуминурии A2-3. Комбинация ингибиторов АПФ и АРАП при отсутствии выраженной протеинурии может оказывать негативное влияние на функцию почек и не оправдана. Она рекомендуется только при уровне альбуминурии A3-A4 при неэффективности монотерапии [67].

4) устранение или минимизация модифицируемых факторов риска развития и прогрессирования ХБП. Следует избегать назначения нефро-токсичных лекарственных препаратов: НПВС, нефротоксичных антибиотиков, рентгеноконтрастных веществ. Необходимо учитывать, что, начиная с 3б стадии ХБП снижается эффективность тиазидных диуретиков и растет риск их побочных явлений, в связи с чем следует отдавать предпочтение петлевым диуретикам. Следует избегать пищевых добавок – тайских трав, «сжигателей жиров», питательных смесей для наращивания мышечной массы, - которые могут неблагоприятно влиять на функцию почек. Повышение ИМТ>25 кг/м2 у молодых здоровых людей, даже при отсутствии специфической почечной патологии, АГ и СД, ассоциируется с повышением риска ТХПН [454]. В связи с этим рекомендуется поддержание ИМТ в пределах 20-25 кг/м2 за счет коррекции калорийности рациона и достаточной физической активности – при отсутствии противопоказаний 30 мин аэробных нагрузок, например, быстрая ходьба, не менее 4-5 раз в неделю). Необходим отказ от курения в связи с тем, что оно является дозозависи-
мым фактором риска снижения СКФ и развития микроальбуминурии [723, 944]. Не менее значимым в профилактике развития и прогрессирования ХБП является ограничение потребления алкоголя [66, 67, 553].

5) низкосолевая (соли<6 г/сутки, натрия <2,4 г/сут), низкобелковая (1 г/кг/сут при 1-2 стадиях ХБП и 0,6-0,8 г/кг/сут при 3a-4 стадиях ХБП); замена животных белков на растительные, которые оказывают меньшую нагрузку на почки; протеины сои оказывают не только меньшее негативное влияние на почечную гемодинамику, но и обладают нефро-, кардио-протективным и антисклеротическим действием), низкокалиевая диета (>4 г/сут при 1-2 стадиях ХБП и 2-4 г/сут при 3a-4 стадиях ХБП) [66].

6) гиполипидемическая терапия для замедления атерогенеза и фиброза почек – статины (целевые уровни липидов: уровень холестерина <4.5 ммоль/л, ЛПНП <3.0 ммоль/л (при ХБП 5 ст. - <2.59 ммоль/л), ТГ<1.7 ммоль/л) [44, 67]. Статины, по результатам мета-анализа, включавшего 50 исследований (30144 пациента с различными стадиями ХБП) достоверно снижали суточную протенурию, хотя существенно не влияли на СКФ. Причем позитивные эффекты статинов не зависели от стадии ХБП [870].

7) осторожная коррекция анемии, поскольку уровень гемоглобина >120 г/л при лечении препаратами эритропоэтина и железа может оказывать негативное влияние [577].

8) более медленная титрация доз лекарственных препаратов, начиная с минимальной и коррекция их в соответствии с СКФ [44].

Ингибиторы АПФ/АРА

В настоящее время единственными лекарственными препаратами, для которых доказано нефропротективное действие при ХСН, являются ингибиторы АПФ и АРА II (см выше)[4, 32].

Влияние ингибиторов АПФ у больных с ХСН и сопутствующей почечной недостаточностью определить не просто, т.к. 1) критерии исключения из клинических исследований основывались на концентрации креатинина в сыворотке, а не расчетной СКФ; 2) лишь малая часть больных,
включенных в эти исследования, имела концентрацию креатинина в сыворотке выше 175 мкмоль/л (2,0 мг/дл); 3) в большинстве исследований не приведен анализ подгрупп, выделенных на основании функции почек [625, 834].

В вышеупомянутое исследование CONSENSUS, согласно критериям включения, не входили больные с концентрацией креатинина в сыворотке выше 300 мкмоль/л (3,4 мг/дл); однако лишь у 26 из 253 участников креатинин сыворотки был выше 175 мкмоль/л (2,0 мг/дл) и ни у кого не было креатинина выше 250 мкмоль/л (2,8 мг/дл). Медиана уровня креатинина в сыворотке составила 123 мкмоль/л (1,4 мг/дл) и среднее значение расчетной СКФ – 45 мл/мин/1,73м², что свидетельствует о наличии умеренной почечной недостаточности у большинства пациентов. Смертность среди больных, получавших эналаприл, была на 31% ниже, чем в группе плацебо. Причем благоприятное влияние на выживаемость было схоже в группах с концентрацией креатинина выше и ниже медианы (123 мкмоль/л) [834]. У 35% больных, которым назначался эналаприл, уровень креатинина в крови при первом повторном визите увеличивался на 30% и выше. Однако у всех, за исключением нескольких пациентов, он вернулся к нормальному при последующих измерениях даже без снижения дозы ингибиторов АПФ. Важно, что благоприятное влияние на выживаемость было одинаковым в группах больных, у которых было и не было отмечено существенное (>30%) увеличение концентрации креатинина в сыворотке крови после начала приема ингибиторов АПФ [834].

Исследование CONSENSUS представило хорошие доказательства эффективности ингибиторов АПФ у больных с ХСН и умеренной почечной недостаточностью. Однако, в этом исследовании не было достаточного количества больных с тяжелой почечной недостаточностью (расчетные значения СКФ≤30 мл/мин/1,73м²), поэтому соотношение эффективности и безопасности ингибиторов АПФ остается неизвестным[834].
В большинстве других крупномасштабных контролируемых исследований по применению ингибиторов АПФ у больных с ХСН изменения концентрации креатинина в сыворотке крови под действием их были сравнимы с плацебо, или лишь недостоверно превышали их. Лишь в исследовании SOLVD было показано, что концентрация креатинина в сыворотке крови достоверно чаще увеличивается при назначении эналаприла, чем плацебо (у 10,7% больных по сравнению с 7,7%) [89, 270].

Ухудшение функции почек не всегда приводит к негативным исходам и наоборот. В исследовании ONTARGET комбинация ингибитор АПФ и АРА снижала экскрецию альбумина с мочной и АД лучше, чем изолированное назначение каждой из этих групп препаратов [601]. Но комбинация не предотвращала развитие комбинированной конечной точки: удвоения уровня креатинина, выхода на диализ или смерти. В связи с чем комбинация ингибитор АПФ и АРА в настоящее время не рекомендуется.

Несиритид

Длительное время изучалось применение несиритида, синтетической формы BNP (МНУП), с целью нефропротекции у больных с ХСН. Назначение несиритида приводит к расширению вен, артерий и коронарных сосудов, уменьшает пред- и постнагрузку на сердце, что приводит к увеличению сердечного выброса без инотропного влияния.

В экспериментальных исследованиях показано его благоприятное воздействие на почки[837]. Однако у больных с ХСН диуретическое действие препарата было менее выражено, чем у здоровых лиц. СКФ под его влиянием не увеличивалась даже у пациентов, у которых этот препарат оказывал натрийуретическое и диуретическое действие [604, 942]. Воздействие несиритида на почечный плазмоток, диурез и экскрецию натрия было сравнимо с плацебо [942].

В исследовании FUSIONII не показало значительного влияния несиритида (инфузии 1-2 р/нед на протяжении 12 недель) на прогноз и качество жизни у больных с тяжелой СН (n=900, у 600 из них СКФ была < 60
мл/мин), но показало влияние на почки – повышение креатинина сыворотки на 0,5 мг/дл (44 мкмоль/л) [592, 969].

Анализ рандомизированных контролируемых исследований, выполненный Sackner-Bernstein соавт., показал, что риск смерти в течение 30 дней больше в группе больных леченных несиритидом, чем в группе плацебо. В многоцентровом рандомизированном двойном слепом плацебо-контролируемом пилотном исследовании Peacocki соавт. показали безопасность применения несиритида при острой декомпенсации СН. По сравнению с группой плацебо, у больных, леченных несиритидом, вероятность повторной госпитализации в течение 30 дней была на 57% меньше, а продолжительность повторной госпитализации в 2,6 раза короче. Метаанализ семи крупных рандомизированных контролируемых исследований, выполненный Arora и соавт., показал, что относительный риск смерти в течение 30 и 180 дней в группах несиритида и плацебо достоверно не различались [740].

Кроме того, в исследовании ROSE, включавшем 360 пациентов с декомпенсацией СН и СКФ от 15 до 60 мл/мин/1,73м2, не было выявлено преимуществ несиритида (0,005 мкг/кг/мин) или допамина (2 мг/кг/мин) по сравнению с плацебо в отношении застоя и СКФ [215]. У многих больных отмечалась тахикардия и гипотензия на фоне допамина и несиритида. В связи с этим их использование у больных с КРС на основе имеющихся на сегодняшний день доказательств не может быть рекомендовано [926]. Т.е. несиритид не оправдал возлагавшихся на него надежд в плане нефропротекции.

Ингибиторы вазопептидаз

Теоретически клиническим преимуществом по сравнению с ингибитор АПФ у больных с ХСН могут обладать ингибиторы вазопептидаз. Первый препарат из этой группы омапатрилат блокирует 3 фермента: АПФ, аминопептидазу Р и неприлизин [703]. Но он часто приводит к аллергическим реакциям, поэтому не рекомендован к применению [532].
Другим ингибитором вазопептидаз является LCZ696. Это препарат новой группы блокаторов рецепторов ангиотензина и неприлизина (АРАН, ARNI). Т.е. препарат одновременно работает как АРА и ингибитирует неприлизин. Блокада неприлизина снижает распад натрийуретических пептидов и тем самым увеличивает их сосудорасширяющее, натрийуретическое и другие положительные влияния [396, 784]. В крупномасштабном исследовании PARADIGM-HF для оценки влияния LCZ696 по сравнению с эналаприлом показано снижение сердечно-сосудистой смертности и частоты госпитализаций по поводу СН на фоне лечения LCZ696 на 20%, смертности от всех причин на 15% [532]. Влияние этого препарата на функцию почек и его назначение с целью нефропротекции предстоит уточнить.

Antагонисты рецепторов вазопрессина

Антагонисты почечных (V2)рецепторов вазопрессина увеличивают диурез и аквауриэз (выведение воды без электролитов), позволяют устранить гипонатриемию как при СН, так и в ее отсутствие [330, 385]. В ряде исследований показан мощный акваретический эффект антагониста почечных (V2) рецепторов вазопрессина толваптанта без повреждения почек у больных острой декомпенсацией СН[367]. Исследование SALT показало, что этот препарат эффективен и безопасен у больных с СН и гипонатриемией. В исследовании EVEREST, в котором участвовали 4133 больных, госпитализированных по поводу СН, у больных, получавших толваптан, сильнее снижалась масса тела и выраженность клинической симптоматики СН по сравнению с группой контроля, но благоприятного влияния на смертность, в т.ч. от сердечно-сосудистых причин, и частоту госпитализаций по поводу СН, не было [368, 522, 532, 740]. Неселективный антагонист сосудистых (V1a) и почечных (V2) рецепторов к вазопрессину— кониваптан, - менее изучен [531, 813]. В других исследованиях у больных с ХСН не было показано преимуществ антагонистов вазопрессина в отношении функции почек по сравнению с фуросемидом [240]. По-видимому, антагонисты вазопрессина могут найти свою нишу в лечении больных с выра-
женной CH, рефрактерной к диуретикам, персистирующей гиперволемией и выраженной гипонатриемией [105, 654]. Назначение этих препаратов с целью нефропротекции не оправдано.

Препараты железа и эритропоэтина

У больных с ХСН часто встречаются дефицит железа и сопутствующая анемия, которые неблагоприятно влияют на прогноз [444, 482]. Наилучший способ коррекции анемии и целевой уровень гемоглобина при этом является предметом споров. Коррекция анемии при ХСН приводила к повышению толерантности к физическим нагрузкам и снижала выраженность клинической симптоматики, но не влияла на выживаемость больных [83, 131, 532, 627]. Препараты эритропоэтина оказывали кардиопротективный эффект за счет подавления апоптоза, оксидативного стресса, воспаления, уменьшали размер инфаркта, увеличивали ангиогенез и предотвращали развитие аритмий [192]. Был показан ренопротективный эффект эритропоэтина и его аналогов [211], но они приводили к гипертензии, что неблагоприятно влияло на общий исход. В некоторых исследованиях коррекция анемии была неэффективной [156] и даже вредной, поскольку препараты железы увеличивали оксидативный стресс [497]. Т.е. нефропротективное влияние препаратов железа и эритропотина не доказано.

Блокаторы A1 рецепторов аденоэзина

Многообещающим подходом к лечению дисфункции почек у больных с ХСН является применение селективных блокаторов A1 рецепторов аденоэзина, которые влияют на внутрипочечную гемодинамику и функцию канальцев [389, 391].

Как отмечалось выше, у больных с ХСН наблюдается повышение уровня аденоэзина в плазме, который снижает кортикальный кровоток в почках и экскрецию натрия. Селективные блокаторы A1 рецепторов аденоэзина (BG9719, KW3902 - ролофиллин) увеличивают диурез и натрийурез. Gottlieb и соавт показал, что BG9719 при назначении вместе с фуросемидом, увеличивали мочевыведение, не изменения СКФ по сравнению с плацебо
и не уменьшает ее, что наблюдается при изолированном назначении фурсемида[389-391]. В другом исследовании ролофиллин достоверно увеличивал СКФ на 32% и почечный плазмоток на 48% [284, 379].

Тем не менее в плацебоконтролируемом рандомизированном исследовании PROTECT (n=2033) ролофиллин у пациентов, госпитализированных по поводу острой декомпенсации СН с рСКФ 20-80 мл/мин/1,73 м2, не улучшал клинические исходы и уровень креатинина сыворотки по сравнению с плацебо. Кроме того, в группе ролофиллина чаще наблюдались неврологические осложнения[611, 636, 741, 947].

Еще одно пилотное исследование также подтвердило нейтральное влияние ролофиллина на функцию почек [392]. Т.е. на сегодняшний день применение ролофиллина с целью нефропротекции при ХСН не оправдано.

Блокаторы рецепторов к эндотелину

Недавно появился многобещающий блокатор рецепторов к эндотелинутезосентан [903]. Возможное нефропротективное действие это лекарственного препарата предстоит изучить.

Активаторы гуанилатциклазы

Было показано, что растворимые активаторы гуанилатциклазы (BAY 58-2667, циницигуат, и HMR1766, атисцигуат) также снижают пред- и постнагрузку и повышают сердечный выброс у крыс с СН, увеличивают экскрецию натрия с сохранением клубочковой фильтрации [531]. Нефропротективное действие препарата у человека планируется изучить.

Инотропные препараты

Стоит отметить, что повышене смертности на инотропах главным образом показано у бета-агонистов (допамина и добутамина) и ингибиторов фосфодиэстеразы 3 (милринона) [254]. Более безопасным является кальциевый сенсинтайзер левосимендан, что делает его инотропом, которому следует отдавать предпочтение при лечении декомпенсации СН с низким сердечным выбросом и артериальной гипотензией. В отдельных работах у не-
большого количества пациентов (n=88 и 40) показано улучшение функции почек на фоне лечения левосименданом [971, 984]. Тем не менее рандомизированное двойное слепое исследование SURVIVE (N=1327) не выявило преимуществ по влиянию на выживаемость у левосимендана по сравнению с добутамином, хотя уровень НУП в плазме лучше снижался на фоне терapiи левосименданом [631]. В исследованиях OPTIME и ESCAPE было показано, что увеличение сердечного индекса не имело клинических преимуществ, не улучшало функцию почек, не предотвращало смертность и повторные госпитализации [254, 677]. Это подтверждает, что повышенное внутриклубочковое и почечное венозное давление, а не снижение сердечного выброса может быть главной детерминантой дисфункции почек и диуретикорезистентности, и инотропные препараты в этой ситуации не должны рассматриваться в качестве препаратов выбора [548].

Недавно были опубликованы результаты исследования ATOMIC-AHFII фазы (n=600) активатора сердечного миозина омекамтив мекарбила, на фоне которого показано улучшение систолической функции и ремоделирования ЛЖ [231]. Возможно, этот препарат в будущем будет являться эффективным для улучшения сердечного выброса у больных с КРС [926].

Внутривенные вазодилататоры

Поскольку применение инотропов ассоциировано с худшей выживаемостью больных с СН, вероятно, наилучшим подходом для увеличения эффективного циркулирующего объема остается снижение постнагрузки, однако его применение ограничено снижением АД [685, 704]. Данные наблюдений показывают, что титрация нитропруссида с переходом на пероральную комбинированную терапию гидралазином и нитратами допустима и потенциально связана с лучшими исходами у больных с выраженной декомпенсацией СН с низким сердечным выбросом, у которых сохраняется нормальное или повышенное АД [656, 658].

Ретроспективный анализ 4953 больных с декомпенсацией СН показал увеличение выживаемости на фоне терапии вазодилататорами по срав-
нению с повышением смертности на фоне инотропной терапии [632]. В низких дозах, не влияющих на АД, вазодилататоры могут меньше ухудшать функцию почек, чем другие препараты для лечения СН. При острой декомпенсации СН чаще всего используют внутривенное введение нитроглицерина. Теоретически снижение венозного застоя при этом может повысить почечное перфузионное давление, равное разности артериального и венозного давлений [486, 573]. Но в реальной практике нитропруссид натрия и нитраты не улучшали почечный кровоток [548]. Кроме того, нитропруссид может быть потенциально опасным при дисфункции почек из-за накопления тиоцианата. Тем не менее у больных с ОСН и нормальным или высоким АД добавление нитратов к низким дозам фуросемида приводило к лучшим исходам [241].

Релаксин-2

Релаксин-2 – природный пептид, который участвует в адаптации организма женщины к состоянию беременности, является мощным почечным вазодилататором [238]. В исследовании RELAX-AHF назначение больным с декомпенсацией СН серелаксина (человеческого рекомбинантного релаксина-2) неожиданно показало снижение общей смертности через 180 дней (вторичная конечная точка) [888]. Кроме того, назначение серелаксина снижало выраженность застойных явлений и потребность во внутривенных диуретиках. Более того, выявлено значимое улучшение СКФ на фоне лечения серелаксином по сравнению с плацебо, что, скорее всего, способствовало улучшению клинических исходов [591]. В настоящее время проводятся дальнейшие исследования препарата, который, возможно, станет перспективным препаратом для лечения КРС [926].

Другие подходы к лечению и поражение почек при ХСН

Учитывая роль воспаления в генезе СН и поражения почек, появилась идея назначения ингибиторов ФНО-α для лечения СН. Результаты нескольких исследований инфликсимаба и этанерцепта были разочаровывающими. Несмотря на снижение концентрации высокочувствительного С-РБ
и ИЛ-6 в плазме, отсутствовало влияние или отмечалось повышение смертности. Это подтверждается результатами исследований ATTACH, RECOVER и RENASSANCE (RENEWAL) [229, 601]. Однако информации по функции почек в этих исследованиях нет [251].

Улучшения перфузии при ХСН можно достигнуть с помощью ресинхронизирующей терапии. В одном исследовании ресинхронизирующая терапия увеличивала СКФ на 2,7 мл/мин/1,73м2 в подгруппе больных с СКФ от 30 до 60 [170].

Учитывая роль активации САС в генезе поражения почек при СН, симпатическая денервация почечных артерий предполагалась в качестве одного из возможного подхода к ведению больных с КРС. Однако, учитывая то, что в исследовании SYMPLICITYHTN-3 не было продемонстрировано преимуществ денервации почечных артерий по сравнению с sham-процедурой, значение этого метода лечения весьма сомнительно [147].

Часто при декомпенсации СН развивается аккумуляция жидкости в третьих пространствах, чаще всего в брюшной полости. Это сопровождается повышением внутрибрюшного давления, что способствует снижению СКФ [924]. Соответственно, проведение парацентеза способствует снижению внутрибрюшного давления и улучшению СКФ [658, 926].

При отеках нижних конечностей, резистентных к диуретикотерапии может быть целесообразна компрессионная терапия для обеспечения лимфатического дренажа и возврата жидкости из межклеточного пространства в сосудистое русло [924].

С патофизиологической точки зрения при СН разумно увеличить сердечный выброс для обеспечения адекватной перфузии органов. Поскольку сердечный выброс при декомпенсации СН недостаточно чувствителен к изменениям преднагрузки из-за истощения механизма Франка-Старлинга, улучшение можно получить с помощью стимуляции сократимости инотропными препаратами, снижением постнагрузки с помощью вазодилататоров или механической поддержки ЛЖ – устройств, поддержива
вающих работу ЛЖ (УПРЛЖ). Действительно, у большинства больных с СН с низким выбросом и КРС, функция почек улучшалась после имплантации УПРЛЖ [411, 800]. Причем худшая функция почек перед имплантацией этих устройств была ассоциирована с неблагоприятным прогнозом [198]. Более того у лиц, которым имплантация УПРЛЖ проводилась в качестве моста к трансплантации почки, функция почек после трансплантации коррелировала с функцией почек, наблюдавшейся после имплантации УПРЛЖ [272, 849]. Однако использование УПРЛЖ ассоциировано с такими осложнениями в отдаленном периоде, как инфекция, кровотечения и тромбозы, и не может рассматриваться как лечение КРС [926].

Таким образом, в последние годы была показана высокая распространенность снижения СКФ у больных с ХСН и доказано неблагоприятное прогностическое значение снижения СКФ. Однако проведенные исследования у этой категории больных оценивали СКФ с помощью точной и универсальной формулы, рекомендованной KDIGO и НОНР, мало изучены аспекты альбуминурии, нарушения канальцевых функций при ХСН. Не оценивались взаимосвязь поражения почек с длительностью ХСН, количеством перенесенных инфарктов миокарда в анамнезе, активностью системы воспаления и др. Не разработаны и не введены в рекомендации по ведению больных с СН методы профилактики и лечения поражения почек. Кроме того, указанные исследования оценивали прогностическое значение поражения почек, не рассматривали поражение других органов-мишеней при ХСН, их взаимное и прогностическое влияние.

Минеральные и костные нарушения при ХСН

<table>
<thead>
<tr>
<th>Нарушения минерального и костного обмена при ХБП</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нарушения минерального и костного обмена (МКН) – широко распространенные осложнения ХБП. Эта патология значительно ухудшает прогноз и встречается практически у всех больных в терминальной стадии, а начальные проявления появляются уже на ранних стадиях ХБП [21, 99].</td>
</tr>
</tbody>
</table>
Минеральные и костные нарушения при ХБП – это системные нарушения костного и минерального метаболизма, проявляющиеся:

- Отклонениями в показателях обмена кальция, фосфатов, паратиреоидного гормона (ПТГ) или витамина D;
- Отклонениями в скорости костного обмена, минерализации, объема костной ткани, линейного роста или прочности кости;
- Кальцификацией сосудов или мягких тканей;
- Или сочетанием этих признаков [99].

В эпидемиологических исследованиях была выявлена независимая связь каждого из лабораторных показателей, характеризующих КМН, с общей летальностью. Было установлено, что наличие внекостной, в т.ч. сосудистой кальцификации, и ее выраженность связаны с высоким риском развития сердечно-сосудистых осложнений, как в общей популяции, так и при ХБП. В результате был предложен термин «минеральные и костные нарушения при хронической болезни почек» (МКН-ХБП) [21].

Интерес к этой проблеме определяется, во-первых, ее прогностической значимостью, и, во-вторых, потенциальной модифицируемостью большинства МКН. Для коррекции МКН-ХБП разработаны новые группы препаратов: бескальциевые фосфатсвязывающие препараты (ФСП), препараты активной формы витамина D, в том числе, селективные активаторы рецепторов витамина D, кальцимиметики. Все эти группы препаратов зарегистрированы в России и могут применяться в клинической практике [21]. Однако, пока в нашей стране остается высокая распространенность выраженного вторичного гиперпаратиреоза, гиперфосфатемии и отклонений уровня кальция от целевых значений у больных с ХБП [21].

Костная патология при ХБП может проявляться переломами (часто бессимптомными, выявляемыми рентгенограммах, обычно – переломами позвонков), и болями. Переломы позвонков могут являться причиной респираторных и тазовых нарушений. Осложнениями переломов могут быть
кровотечения, инфекции, ограничение подвижности и потеря самостоятельности, что приводит к увеличению летальности [21].

В общей популяции в периоде менопаузы и в старшей возрастной группе часто развивается остеопороз, характеризующийся снижением минеральной плотности кости (МПК). Такие изменения могут развиваться и у пациентов с ХБП в ее дебюте. Однако при ХБП 3–5 стадий повышенная ломкость костей может быть обусловлена как снижением МПК, так и аномальной структурой кости (в том числе при нормальной или повышенной МПК). В связи с этим и с учетом патофизиологических различий термин «остеопороз» оправдано использовать только на ранних стадиях ХБП, затем снижение минеральной плотности следует трактовать как «МКН-ХБП со сниженной МПК» [21].

В настоящее время при ХБП продолжается изучение кальций-фосфорного гомеостаза, ПТГ, витамина D и ЩФ и проводятся поиски других маркеров костной патологии. В качестве таковых обсуждаются: показатели синтеза коллагена и продуктов его деградации, пептиды, секретируемые остеокластами (остеокальцин, остеопротегерин, активатор рецептора фактора кВ), остеобластами (кислая фосфатаза) и остеоцитами (FGF23) [21].

При этом минеральные и костные нарушения у больных с ХСН, их взаимосвязь с дисфункцией почек и прогнозом изучены недостаточно. В современных рекомендациях по ведению пациентов с ХСН информация о МКН отсутствует [38, 626].

Обмен фосфатов в норме, при ХБП и при сердечнососудистой патологии

Фосфор является ключевым компонентом нуклеиновых кислот и мембран клеток. Он необходим для контроля нормального обмена веществ в клетках, в т.ч. энергетического обмена и передачи клеточных сигналов [311, 840]. В биологических системах фосфор связывается с кислородом и существует в виде фосфата. 85% фосфатов в организме человека содер-
жится в костях в соединении с кальцием в виде солей гидроксиапатитов. Фосфаты фильтруются в клубочках и приблизительно 85% профильтировавшихся фосфатов реабсорбируется, главным образом, в проксимальных канальцах с помощью натрий-фосфорного котранспортера IIa (NaPi-2a). Кроме него, реабсорбцию фосфатов в почках также осуществляет транспортер NaPi-2c[387, 453, 904].

Отклонения уровня фосфатов сыворотки от нормального уровня, как известно, клинически значимы. Гипофосфатемия наблюдается при мальниции/мальабсорбции, refeeding-синдроме (увлажнении внутриклеточного связывания кальция), лейкозах, лимфомах, диабетическом кетоацидозе, респираторном алкалозе, гиперпараатиреозе, опухольсвязанной остеомаляции, врожденной или приобретенной фосфатурии (последняя может быть связана с токсинами, в т.ч. тяжелыми металлами, лекарственными препаратами, такими как аминогликозиды, цисплатин, тенофовир, антацидами, содержащие магний, алюминий, и др). Гипофосфатемия часто бессимптомна, но в тяжелых случаях может проявляться миопатией, дыхательной или сердечной недостаточностью, ментальной дисфункцией, гемолизом и рабдомиолизом[380].

Поскольку фосфаты экскретируются преимущественно почками, гиперфосфатемия часто развивается при ХБП и ассоциирована с нарушением обмена кальция, паратиреоидного гормона и витамина D, которые могут приводить к деминерализации костной ткани и эктопической кальцификации мягких тканей [840].

Гиперфосфатемия как фактор риска увеличения смертности впервые была выявлена у больных, получающих лечение гемодиализом [165]. В когорте из более 40000 гемодиализных пациентов при повышении уровня фосфатов выше 5,6 мг/дл (1,78ммоль/л) риск смертности увеличивался на 6% на каждый 1 мг/дл повышения фосфатов. С помощью моделей выживаемости было показано, что как низкие, так и высокие уровни фосфора связаны с повышением смертности и самый низкий риск смерти наблюдался
при уровне фосфатов в сыворотке между 3,6-5,0 мг/дл (0,84 -1,62 ммоль/л). Это было подтверждено во множестве исследований и подобные данные были получены у больных с менее выраженными стадиями ХБП, не получавших лечение диализом [166, 303, 503, 552, 707, 935].

В общей популяции и у больных с ИБС более высокий уровень фосфатов также был связан с повышенной частотой сердечнососудистых событий или сердечнососудистой смертности [106, 224, 276, 277, 289, 290, 311, 335-338, 503, 504, 543, 569, 902]. В большинстве исследований недиализных больных уровень фосфатов в сыворотке был преимущественно нормальным. Тем не менее большие уровни были ассоциированы с неблагоприятными исходами, независимо от функции почек и традиционных сердечнососудистых факторов риска. Эти данные были подтверждены в субпопуляциях с нормальным уровнем рСКФ (≥90 мл/мин/1,73м2) [276, 277, 289, 290, 338, 902]. Это свидетельствует о дозозависимой взаимосвязи между ССЗ и уровнем фосфатов в диапазоне нормальных и высоких значений, что аналогично другим классическим сердечнососудистым факторам риска, таким как АД [303, 816]. В связи с этим гиперфосфатемия в последние годы стала рассматриваться как один из факторов риска развития сердечнососудистой патологии [311, 840].

Исследователи Framingham Offspring Study сообщили, что повышенные уровни фосфатов связаны с повышением риска комбинированной конечной точки, включавшей развитие ИБС, инсульта, заболеваний периферических сосудов и ХСН [277], но эта взаимосвязь не подтвердилась в исследовании Health Professionals Follow-up Study[816, 887]. Клинико-прогностическое значение уровня фосфатов при ХСН изучено недостаточно.

Возможные механизмы, связывающие повышение фосфатов и сердечно-сосудистые события

Механизмы, лежащие в основе ассоциации ССЗ и фосфатемии, окончательно не изучены [311].
Первая гипотеза взаимосвязи фосфатов и сердечно-сосудистого риска свидетельствует о том, что повышение фосфатов в сыворотке прямо приводит к повреждению ССС, в т.ч. сосудистой кальцификации и повышению жесткости артерий [311, 501, 720, 721], эндотелиальной дисфункции и атеросклерозу [523], гипертрофии, фиброзу миокарда и аритмиям, которые могут приводить к летальным исходам [766, 874]. Прямое влияние фосфатов на окислительное фосфорилирование и энергетический метаболизм клеток способствует развитию оксидативного стресса (повышению продукции активных форм кислорода), повреждению клеток, апоптозу, снижению синтеза оксида азота и дисфункции эндотелия [177, 311, 539, 841]. Поскольку эндотелиальная дисфункция является предшественником атеросклероза, эти данные могут объяснить взаимосвязь между повышенным уровнем фосфатов и сосудистой патологией [310, 311, 387, 675, 720, 721].

Работают ли эти механизмы сосудистого повреждения при отсутствии ХБП? У мышей с нормальной функцией почек при высоком употреблении фосфатов с пищей наблюдалось ускоренное развитие атеросклероза [310, 387]. Уровень фосфатов сыворотки в пределах нормального диапазона коррелировал с утолщением толщины комплекса интима-медиа у бессимптомных молодых или среднего возраста взрослых без ССЗ или патологии почек, независимо от факторов риска, традиционных для атеросклероза и ХБП [694, 782]. У молодых с сохраненной функцией почек высокий нормальный исходный уровень фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных артерий, определяемой по компьютерной томографии через 15 лет [335, 336]. У здоровых добровольцев пероральный прием фосфатов, который приводил к повышению концентрации фосфатов в сыворотке крови предсказывал развитие кальцификации коронарных арteryй, определяемой по компьютерной томографии че
ствовали развитию эндотелиальной дисфункции, атеросклероза и ССЗ [311]. Все это доказывает, что наличие ХБП не обязательно для негативного влияния уровня фосфатов на эндотелий и развитие атеросклероза.

Еще одна гипотеза взаимосвязи фосфатов и сердечно-сосудистого риска предполагает, что повреждение сердечно-сосудистой системы могут запускать компенсаторные механизмы, включающиеся при избытке фосфатов, такие как снижение уровня витамина D, повышение уровня FGF23 и ПТГ [319]. Действительно, недостаточность витамина D ассоциирована с неблагоприятными сердечно-сосудистыми исходами [767] и может способствовать кальцификации коронарных артерий [946]. Низкий уровень кальцитриола и высокий ПТГ ассоциированы с ССЗ даже в популяции без ХБП и известных костно-минеральных расстройств. Однако пока не понятно, можно ли объяснить взаимосвязь сердечно-сосудистого риска и фосфатемии снижением уровня витамина D [311]. Повышение уровня фосфатов в крови приводит к увеличению секреции остеобластами и остеокластами гормона FGF23. FGF23 является предиктором кальцификации коронарных сосудов у больных с ХБП 2-3 стадии даже при нормальном уровне фосфатов сыворотки [493]. Уровень циркулирующего FGF23 также ассоциирован с сосудистой кальцификацией [507], жесткостью артерий и эндотелиальной дисфункцией [643] и повышением уровня маркеров воспаления [527, 659], высоким риском атеросклероза, прогрессированием ХБП и гипертрофии миокарда ЛЖ [324, 334, 404, 643]. Гипертрофия кардиомиоцитов развивалась в результате α-Klotho-независимой FGF-рецепторзависимой активации кальциневрина-ядерного фактора активированных T-клеток (NFAT) сигнальных путей [387]. Гиперпаратиреоз связан с повышенным сердечнососудистым риском рядом механизмов, в т.ч. эндотелиальной дисфункцией и гипертензией [333]. Рецепторы к ПТГ экспрессируются в эндотелиальных, гладкомышечных сосудистых клетках и кардиомиоцитах. Invitro уровень ПТГ в пределах нормальных значений активирует экспрессию эндотелиальными клетками провоспалительных и
атеросклеротических медиаторов интерлейкина-6 и рецептора конечных продуктов гликирования (RAGE), которые могут способствовать поражению CCC [644, 755].

Также более высокие уровни фосфатов в сыворотке и FGF23 могут быть маркером субклинической ХБП, которая приводит к повреждению сосудов. Однако, несмотря на четкую взаимосвязь между фосфатом сыворотки и рСКФ, взаимосвязь между фосфатом и сосудистыми повреждениями наблюдалась и при СКФ>90 мл/мин [387].

Кроме того, взаимосвязь фосфатемии и ССЗ может быть обусловлена рядом костно-сосудистых сигнальных путей. Остеопонтин — ингибитор костной минерализации и сосудистой кальцификации, также участвует в атерогенезе у животных и клинически коррелирует с распространённостью атеросклероза. Его уровень в плазме повышается при большем потреблении фосфатов у мышей. Invitro экспрессия остеопонтина гладкомышечными клетками сосудов также увеличивается при повышении концентрации фосфатов фосфатов [218, 311].

Другие костно-сосудистые сигнальные пути, связывающие фосфатный обмен с атеросклерозом и другими ССЗ, нуждаются в дальнейшем изучении [311].

Нарушения кальций-фосфорного обмена у больных с ХСН

Plischken соавт. наблюдали 99 амбулаторных пациентов с ХСНсФВ (33±10%) в течение 35 мес. Пациенты с повышенным уровнем неорганических фосфатов в сыворотке и FGF23 достоверно чаще достигали комбинированной конечной точки госпитализации в связи с ССЗ или смерть. Уровень FGF23 оказался предиктором общей смертности (HR 5,042) в модели с коррекцией по возрасту, полу, расчетному клиренсу креатинина, ФВЛЖ, ФК NYHA и NT-pro-BNP. Уровень неорганических фосфатов предсказывал вероятность госпитализации по поводу CH (HR 26,944), госпитализации по поводу ССЗ (HR 16,016) и комбинированной конечной точки (HR 13,294) в моделях, скорректированных по другим показателям [732].
Essi соавт. оценили клинические и лабораторные показатели 974 амбулаторных пациентов с СН. Распространенность повышения уровня фосфатов (>4,5 мг/дл, или 1,45 ммоль/л) составила 5,8% у мужчин и 6% у женщин. Уровень фосфатов коррелировал с тяжестью заболевания, оцененной по NYHA, ФВ ЛЖ и NT-pro-BNP (р<0,001). Многофакторный регрессионный анализ с коррекцией по различным клинически значимым факторам выявил, что исходный уровень фосфатов был независимо взаимосвязан с общей смертностью и трансплантацией сердца (HR 1,25 (95%ДИ 1,04-1,52) р<0,001). Эта взаимосвязь была выявлена у больных с и без ХБП. 1 мг/дл (0,32 ммоль/л) увеличения исходного уровня фосфатов сыворотки был ассоциирован с увеличением риска смерти или трансплантации сердца на 26%. Эта ассоциация не зависела от наличия ХБП и сохранялась у пациентов с уровнем фосфатов в пределах нормы [316].

Несмотря на это, в повседневной практике больные с СН получают лечение без учета исходного уровня фосфора. Влияние усиления терапии на сывороточный фосфор не описано. Клинические рекомендации по СН не учитывают возможные изменения уровня фосфатов в ответ на терапию [781].

Rozentryt и соавт. у 722 пациентов с СН, которым провели титрацию доз препаратов проанализировали распространенность нарушения уровня фосфатов и их взаимосвязь с тяжестью СН на высоте оптимальной терапии и оценили риск нарушений фосфорного обмена при разных стадиях СН, предикторы нарушений фосфорного обмена и их взаимосвязь с прогнозом. Гипофосфатемия была связана с лучшим ответом на лечение и больше распространена при более мягкой СН, эта взаимосвязь не зависела от возраста, пола, ИМТ, этиологии СН, функции почек и применения диуретиков. Гипофосфатемические пациенты теряли больше фосфора с мочой, у них был меньше выражен катаболизм. Причина гипофосфатемии не ясна. Возможно, она связана с высвобождением фосфатурической субстанции печенью вследствие улучшения ее функции после усиления терапии СН.
Для подтверждения этого необходимы дальнейшие исследования [153, 678, 781, 864, 956].

В этом же исследовании больные с СН и гиперфосфатемией на высоте оптимальной терапии хуже отвечали на лечение. Гиперфосфатемия чаще встречалась при выраженной СН. Клинический и биохимический профиль больных с гиперфосфатемией свидетельствовал о преобладании у них процессов катаболизма [781].

Гиперфосфатемия при СН может объясняться, во-первых, тканевой гипоксией, имеющей при выраженных стадиях СН, которая может индуцировать выход фосфора из клеток подобному тому, что наблюдается при синдроме лизиса опухоли [450]. Во-вторых, к гиперфосфатемии может приводить большее всасывание фосфатов отечным ишемизированным кишечником [297, 781].

Взаимосвязь уровня фосфатов и прогрессирования ХСН можно объяснить несколькими механизмами. Данные исследований на животных использованием ядерной магниторезонансной спектроскопии свидетельствуют о важной роли неорганических фосфатов в энергетическом метаболизме и сократимости миокарда. Было предположено, что неорганические фосфаты являются первичным сигналом обратной связи для стимулирования окислительного фосфорилирования и также важным продуктом гидролиза АТФ, ограничивающим способность сердца гидролизировать АТФ [963]. Ранее было предположено, что неорганические фосфаты играют важную роль в подавлении силы сокращения миокарда в начале ишемии [415]. Также фосфаты сыворотки могут непосредственно приводить к повреждению сосудов. Большой уровень фосфатов сыворотки связан с большей кальцификацией ГМК сосудов, что может повышать жесткость сосудов и вносить вклад в прогрессирование заболевания [369, 764]. Сообщалось, что гиперфосфатемия запускает остеобластическую транскрипционную программу в сосудах [316, 612].
Кроме прямого влияния, фосфат может приводить к прогрессию СН посредством витамина D, ПТГ и FGF23 [744]. Снижение витамина D связано с возможными факторами прогрессирования СН, такими как большая активность ренина плазмы, воспаление и высокие цифры АД [530, 572, 762]. Повышенные уровни фосфатов также взаимосвязаны со вторичным гиперпаратиреозом, даже у здоровых лиц [845]. Более высокие уровни ПТГ индуцируют развитие гипертрофии миокарда и продукцию цитокинов, которые тоже могут вносить вклад в прогрессирование заболевания [644, 991].

Нарушения кальциевого обмена нередко встречаются при СН [829]. Проведены исследования пациентов в условиях отделений интенсивной терапии, в т.ч. с ОСН, которые показали высокую распространенность гипокальциемии и ее ассоциацию с неблагоприятным прогнозом [867]. Однако, коррекция гипокальциемии внутривенным кальцием в определенных клинических условиях была связана с увеличением смертности [234]. В противоположность ОСН, эпидемиологических данных по нарушению уровня сывороточного кальция у больных со стабильной СН, получающих оптимальную терапию, недостаточно. Большинство проведенных исследований малочисленны, не указывают терапию, влияющую на уровень кальция и не принимает в расчет такие важные факторы как функция почек [135, 358, 780].

Как гипо-, так и гиперкальциемия могут оказывать неблагоприятное влияние на сердечно-сосудистую систему. При гиперкальциемии развивается кальцификация различных структур сердечнососудистой системы, тогда как при гипокальциемии многократно было показано появление или усиление признаков СН [595].

Обычная терапия СН может оказывать значительное влияние на костный метаболизм с возможным изменением уровня кальция. Например, при экспериментальных переломах у мышей периндоприл ускорял заживление бедренной кости [359]. Кроме того, у крыс после оварионэктомии каптоприл оказывал позитивное влияние на остеопению и способствовал
формированию кости [574]. В обеих моделях для восстановления кости требовался кальций [780].

Пропранолол при назначении оварионэктомированным крысам уменьшал выраженность остеопороза и увеличивал концентрацию сывороточной щелочной фосфатазы, подобно эффекту золендроновой кислоты и альфакальцидола [506]. Хирургическое лечение первичного гиперпаратиреоэроза приводит к снижению ПТГ и кальция сыворотки и повышению минеральной плотности кости [302, 829]. Подобный ПТГ-снижающий эффект был обнаружен после назначения антагонистов альдостерона [780, 793].

На основании вышесказанного заманчиво предположить, что при ХСН на фоне низкого потребления кальция или нарушения кишечной абсорбции за счет снижения витамина D, ингибирование секреции ПТГ антагонистами альдостерона может вызывать эффект, подобный синдрому голодной кости, приводящему к гипокальциемии. Этот синдром появляется у больных с гиперпаратиреозом после хирургической коррекции, когда быстрая отмена действия ПТГ на кость приводит к быстрому отложению кальция в неминерализованный костный матрикс [494]. При СН несоответствие между низким потреблением кальция или нарушением кишечной абсорбции и метаболической потребности кости может усугубляться анаболическим эффектом ингибитор АПФ, АРА или бета-блокаторов [780].

713 больных с ХСН с ФВЛЖ≤45% наблюдались в течение 765 (±18,9) дней. ФВЛЖ была обратно взаимосвязана с кальцием, натуральным логарифмом неорганических фосфатов сыворотки и логарифмом кальций-фосфорного произведения (Са*Р). Кальций и натуральный логарифм Са*Р были взаимосвязаны с общей смертностью. Кальций был значительно взаимосвязан с прогрессированием СН и несердечнососудистой, но не внезапной смертностью. Бинарная логистическая регрессия показала, что натуральные логарифмы неорганических фосфатов и LnCa*Р были взаимосвязаны с риском госпитализаций [252]
В другом исследовании гипокальциемия была выявлена у 22,9% из 722 больных с ХСН III-IV ФК. Она была связана со снижением катаболизма, повышением альбумина и меньшим уровнем фосфора, использованием тиазидных диуретиков и курением. Гиперкальциемия – у 8,7%, ассоциированная с высоким катаболизмом, более выраженным воспалением, меньшей минеральной плотностью кости. Снижение альбумина и больший уровень фосфора были значимыми предикторами гиперкальциемии, независимо от функции почек. Мягкая гипокальциемия после максимизации терапии не была взаимосвязана с плохим прогнозом. Гиперкальциемия была связана с недостаточным ответом на лечение, ее прогностическое значение не ясно [780]. Таким образом, кальциевый обмен при СН нуждается в дальнейшем изучении.

Роль FGF23 в норме, при ХБП и при ССЗ

Открытие фактора роста фибробластов FGF23 расширило понимание роли фосфатного обмена в патогенезе ССЗ. FGF23 - циркулирующий гормон, который секретируется остеоцитами и остеобластами в ответ на повышение фосфатов и концентрации 1,25-дигидроксивитамина D3 (кальцитриола) в крови. Действие FGF23 на минеральный обмен осуществляется путем связывания FGF23 с гетеродимерным комплексом, состоящим из рецептора FGF23 и его специфического рецептора α-Klotho. Активация комплекса α-Klotho-FGF-рецептор в почках увеличивает почечную экскрецию фосфатов за счет подавления активности и экспрессии натрийзависимых фосфатных транспортёров NaPi-2α и NaPi-2c в мембране проксимальных канальцев. Также FGF23 подавляет экспрессию CYP27B1, кодирующего 25-гидроксивитаминаD3-1α-гидроксилазу, которая способствует образованию кальцитриола, и стимулирует экспрессию CYP27A1, кодирующего катаболическую 1,25диgidроксисид324-гидроксилазу, которая разрушает кальцитриол. В результате снижается уровень 1,25-дигидроксивитамина D3[750]. Путем увеличения экскреции фосфатов с мочой и снижения всасывания фосфатов в ЖКТ в результате снижения
уровня 1,25-дигидроксивитамина D3, FGF23 способствует поддержанию нормальной концентрации фосфатов в крови, несмотря на высокое поступление пищей. Наоборот, низкий уровень FGF23 поддерживает нормальную концентрацию фосфатов в крови при низком их потреблении [387, 453, 816, 904].

Кроме этого, имеются данные, что FGF23 подавляет секрецию ПТГ, как показано в исследованиях invivo и invitro. Но этот эффект остается спорным, т.к. клинически повышенные уровни FGF23 были связаны с более высокими, а не низкими уровнями ПТГ и рефрактерным вторичным гиперпаратиреозом [663]. Это несоответствие может быть объяснено резистентностью паращитовидных желез при уремии к действию FGF23, возможно из-за подавления α-Klotho [355]. FGF23 подавляет транскрипцию гена α-Klotho в почках. Помимо того, что он является важным кофактором FGF23, α-Klotho также высвобождается в кровоток и оказывает различное влияние на метаболизм, которое может рассматриваться как непрямое действие FGF23 на различные органы [526, 527, 750, 871].

При снижении СКФ у больных с ХБП, начиная с ранних стадий, уровни FGF23 прогрессивно увеличиваются и могут превышать норму в 1000 раз у пациентов, получающих лечение гемодиализом [840]. Уровень FGF23 очень рано повышается при ХБП, и представляет собой, вероятно, самое раннее нарушение костно-минерального обмена [402, 527].

Хотя механизм не до конца понятен, повышение FGF23 помогает больным с ХБП поддерживать нормальную концентрацию фосфатов, пока функция почек критически не снизится. Повышенный уровень циркулирующего FGF23 ассоциирован с повышенной смертностью при ХБП, независимо от фосфатов сыворотки, и предсказывает смертность лучше, чем фосфаты сыворотки [405, 483]. У 833 амбулаторных пациентов со стабильной ИБС повышенный уровень FGF23 был независимо ассоциирован со смертностью и сердечнососудистыми событиями даже после коррекции по функции почек [710]. Сосудистые клетки, дифференцированные в остеоб-
ласты, также могут высвобождать FGF23. Какое количество FGF23, вы-
свобождаемого сосудами в составе циркулирующего FGF23, неизвестно
[387, 792].

Однако не все исследования выявили взаимосвязь FGF23 с исходами. Напри-
мер в проспективном исследовании когорты больных с ХБП в Япо-
нии повышение FGF23 предсказывало сердечно-сосудистые события перед
началом диализа, но непредсказывало после начала диализа [527, 664].

Несмотря на важную физиологическую роль FGF23, появляется все
больше доказательств, что уровень FGF23является фактором риска и, воз-
можно, модифицируемым механизмом развития ССЗ [828]. Проспектив-
ные исследования больных с ХБП и без ХБП показали дозозависимую вза-
имосвязь между повышением уровня FGF23 и повышением вероятности
развития больших сердечнососудистых событий и смертности [405, 470,
483]. Также была выявлена взаимосвязь FGF23 с гипертрофией миокарда
ЛЖ [324, 404, 822, 831], дисфункцией ЛЖ [822] и ФП [822]. У здоровых
лиц FGF23 был связан с общей смертностью и развитием СН [477].
FGF23 был ассоциирован с тяжестью заболевания и смертностью у боль-
ных с кардиогенным шоком [739, 745].

Shibata и соавт. определили уровня циркулирующего FGF23 и α-
Klotho у 100 кардиологических больных в стационаре: 59 с ИБС, 10 с КМП,
6 в аневризме аорты, 22 с аритмней, 8 – с патологией периферических ар-
терий, 8 –скаппальной патологией сердца. FGF23, но не α-Klotho был значи-
тельно взаимосвязан с ФВ ЛЖ и ИММЛЖ с β= - 0,35, р< 0,001 и 0,26,
р<0,05 соответственно. После коррекции по возрасту, полу, рСКФ, кон-
cентрации интактного ПТГ в сыворотке и 25-гидроксивитамина D, лоغا-
рифм FGF23 оказался статистически значимым положительным предикто-
ром снижения ФВЛЖ и ГЛЖ. Может ли коррекция повышенного уровня
FGF23 улучшить сердечные исходы в популяциях высокого риска, требует
дальнейшего изучения [816, 831].

Механизмы взаимосвязи FGF23 с неблагоприятными исходами
Возможно и даже вероятно, что главные механизмы неблагоприятных влияний повышения FGF23 по своей природе являются сердечно-сосудистыми. Различные другие биохимические аномалии, с которыми коррелирует FGF23 (такие как гиперфосфatemия, гиперпаратиреоз, гиповитаминоз D) сами по себе тоже связаны с ССсобытиями и, следовательно, возможно, что ассоциация FGF23 с этими событиями является отражением этих лежащих в основе механизмов, а FGF23 – всего лишь суррогатный маркер МКН-ХБП. В частности, высокий уровень FGF23 может быть отражением первичной утраты функции α-Klotho, который сам по себе работает как гормон (имеет гормональные функции). Кроме того, FGF23, который подавляет экспрессию α-Klothov почках, может привести к снижению выхода секретируемого α-Klothov кровоток. Циркулирующий α-Klotho, как было показано, подавляет TRPC6 каналы в сердце, оказывающие кардиопротективный эффект [966], а также действует как антагонист Wnt/b-катенинового пути [988]. Активация этих путей за счет FGF23 опосредованного снижения уровня циркулирующего α-Klotho, может приводить к ГЛЖ при ХБП [527].

Несмотря на правдоподобность этих рассуждений, возможно, что FGF23 сам по себе действует независимо от ХБП, и это может приводить к неблагоприятным СС-эффектам. Во-первых, в наблюдательных исследованиях показано, что взаимосвязь FGF23 с неблагоприятными эффектами не зависит от других биохимических отклонений, характерных для МКН-ХБП. Во-вторых, степень повышения FGF23 при конечной стадии патологии почек затмевает все остальные компоненты МКН-ХБП, что делает маловероятным то, что FGF23 просто является суррогатным маркером МКН-ХБП и более вероятным то, что FGF23 имеет различные независимые эффекты. В-третьих, исследования последних лет показали взаимосвязь между повышением FGF23 и смертностью даже при нормальной функции почек [710]. Наконец, недавно было показано, что FGF23 может оказывать
прямое и опосредованное действие на Сердечнососудист систему, отличающееся от его действия на костно-минеральный обмен [527].

РААС играет центральную роль в повышении сердечно-сосудистой заболеваемости и смертности посредством различных эффектов, таких как гипертензия, дисфункция барорецепторов, симпатическая активация, диабетическая нефропатия, прогрессирование атеросклероза, эндотелиальная дисфункция, ингибитирование фибринолитической системы и ГЛЖ [137]. Недавно исследование по изучению влияния FGF23 на стимуляцию и су- pressию различных генов показало, что FGF23 стимулирует RAAS, подавляя экспрессию АПФ2 в почках, независимо от других типичных нарушений костно-минерального обмена. Активация RAAS, таким образом, может быть возможным звеном, объясняющим связь FGF23 с неблагоприятными побочными эффектами, такими как ГЛЖ. То, что МКН-ХБП могут играть роль в RAAS-опосредованных механизмах также было показано в недавнем вторичном анализе RamiprilEfficacyinNephropathytrial, в котором показано, что ренопротективные эффекты терапии ингибитор АПФ наблюдались только у лиц с меньшим уровнем фосфатов в сыворотке [992]. В этом исследовании не оценивался уровень FGF23; т.е. может ли он играть роль в наблюдаемом эффекте, неясно [527].

Вторым возможным механизмом взаимосвязи повышения FGF23 и неблагоприятных ССсобытий является предполагаемое влияние на воспаление. Экспериментальные данные свидетельствуют о том, что FGF23 повышает продукцию маркеров воспаления, таких как липокалин-2, трансформирующий фактор роста β и фактор некроза опухоли α. Повышение FGF23 было связано с маркерами воспаления также в наблюдательном исследовании [659]. Точные пути влияния FGF23 на воспаление предстоит уточнить [527].

Совсем недавно была выдвинута интригующая гипотеза о том, что FGF23 может оказывать прямое действие на органы, в которых не экспрессируется α-Klotho. В ряде экспериментов, выполненных одной группой ис-
следователей, показано, что FGF23 может индуцировать ГЛЖ invitro у животных [324]. Кардиомиоциты не экспрессируют α-Klotho, следовательно, это изменяет представление о том, что действие FGF23 на его рецепторы слабо без наличия α-Klotho даже при высоких концентрациях FGF23[986]. Еще остается подтвердить, что такие эффекты FGF23 возможны при его высоких концентрациях, которые наблюдаются при конечных стадиях патологии почек, но исследования, показавшие взаимосвязь FGF23 и ГЛЖ у больных с нормальной функцией почек свидетельствуют о том, что эта взаимосвязь может отражать не только чрезмерное повышение уровня FGF23 в сыворотке крови [527].

FGF23 при XCH

Poelzlх соавт. у 208 больных с неишемической СН ФВ ЛЖ 34±15%, рСКФ≥60 мл/мин/1,73м2 измерили концентрации FGF23, неорганических фосфатов, ПТГ, 25-гидроксивитамина D. FGF23 был прямо взаимосвязан с ФК NYHA, NT-Pro-BNP, центральным венозным давлением, средним давлением в легочной артерии и обратно – с сердечным выбросом после коррекции по функции почек. Логарифм концентрации FGF23 был связан с комбинированной конечной точкой смерть или трансплантация сердца независимо от уровня фосфатов, ПТГ, 25-гидроксивитамина D, возраста, пола [739]. Взаимосвязь FGF23 с исходами СН также была показана в 2 небольших когортах больных с СН [395, 732].

Терапевтические стратегии коррекции гиперфосфатемии и повышения FGF23

Диетическая коррекция фосфатов

Уровень фосфатов в сыворотке поддерживается в пределах нормального диапазона рядом регуляторных гормонов. Несмотря на это, диетический контроль позволяет существенно изменять уровень фосфатов в сыворотке [743]. При отсутствии нарушения функции почек и длительного нарушения потребления фосфатов, не совсем понятно, почему у одних людей концентрация фосфатов в сыворотке составляет 1,5 ммоль/л (верхняя
граница нормы), а у других 0,8 ммоль/л (нижняя граница нормы). Было предположено, что эти особенности могут быть генетически обусловленными. Выделены полиморфные маркеры, ассоциированные с уровнем фосфора в сыворотке [502]. Но до сих пор мало изучена связь генетических маркеров уровня фосфатов и сердечно-сосудистого риска, хотя была показана ассоциация гипертрофии миокарда левого желудочка с полиморфизмом натрий-независимого фосфатного транспортера Pit-1 у афроамериканцев [311, 637].

С целью снижения уровня фосфатов в сыворотке крови и FGF23 целесообразно ограничить потребление фосфатов с пищей или уменьшить их всасывание. В краткосрочных исследованиях ограничение потребления фосфатов приводило к снижению уровня фосфатов и FGF23, тогда как повышенное содержание фосфатов в пище приводило к повышению уровня FGF23 и уровня фосфатов [194, 329, 927]. При ХБП высокое содержание фосфатов в пище и высокое отношение фосфаты/белки ассоциировано с повышением риска развития ССЗ [387, 679]. В большинстве исследований повышенного употребления фосфатов были использованы очень высокие дозы неорганических фосфатов, которые почти полностью адсорбируются в ЖКТ [194, 329]. Добавление небольшого количества фосфатов и различные уровни фосфатов при употреблении в пищу различных естественных источников фосфатов мало изучено [816].

Основным источником органических фосфатов при естественном питании является пищевой белок. В исследовании 19 здоровых добровольцев при снижении содержания белка в пище не изменялся уровень FGF23 [529]. В других исследованиях при ограничении потребления белка с пищей снижался уровень FGF23 [278]. Однако биодоступность фосфатов зависит от их источника. Биодоступность фосфатов из животных белков (казеина) составляет 100%, из растительных (зерна) – 50%. При употреблении растительных белков абсорбируется меньше количество фосфатов, чем из животных, т.к. фосфаты в растительных белках связаны
со сложной кольцевой структурой, известной как фитата, которая плохо переваривается в ЖКТ. Действительно, у 9 пациентов с ХБП уровни фосфатов и FGF23 в сыворотке крови снижались на фоне диеты, содержащей преимущественно растительные белки, и увеличивались на фоне диеты, содержащей преимущественно животные белки, несмотря на одинаковое содержание фосфата [647]. Эти данные подтверждены в большом наблюдательном исследовании больных с ХБП, в котором потребление белков преимущественно растительного происхождения было ассоциировано с меньшим уровнем FGF23 [815]. В другом большом наблюдательном исследовании, уровни FGF23 были несколько увеличены у лиц, употреблявших большее количество фосфатов в соответствии с результатами пищевого опросника. Хотя сила взаимосвязи была небольшой в этих наблюдательных исследованиях, истинная ассоциация может быть недооценена из-за неточности пищевых отчетов и отсутствия баз данных для расчета количества потребляемых фосфатов с учетом различий в биодоступности (его всасывания) [150, 403, 816].

Снижение содержания фосфатов в пище может изменять главные составляющие регуляторной оси (ПТГ, кальцитриол, FGF23) в благоприятную сторону. Диетическое ограничение фосфатов и прием пероральных фосфатсвязывающих агентов приводило к снижению усредненного по времени содержания сывороточного фосфата у здоровых добровольцев на 40% и снижало повреждающее действие постпрандиальных фосфатных пиков. С целью уменьшения поступления фосфатов с пищей нужно уменьшить потребление белков, особенно животного происхождения, не включать в рацион консерванты, используемые в полуфабрикатах и фастфуде и требовать от производителей указания содержания фосфатов на этикетках покупаемых продуктов [816]. Низкое содержание фосфатов характерно для средиземноморской диеты, рекомендованной при ССЗ [264].

Медикаментозное лечение перегрузки фосфатами
Фосфатсвязывающие препараты (ФСП) снижают фосфаты в сыворотке и FGF23.

На сегодняшний день результаты некоторых [167, 228, 242, 386, 468], но не всех [469, 821, 863] краткосрочных исследований ХБП подтверждают эффективность лечения фосфатсвязывающими препаратами с или без ограничения фосфатов в пище в отношении уменьшения уровня FGF23 и 24часовой экскреции фосфатов, биомаркера абсорбции фосфатов. Однако, большой проблемой является долгосрочная эффективность, безопасность, возможность применения и их способность предотвращать ССС[816]. В настоящее время никаких доказательств из рандомизированных контролируемых исследований о том, что снижение фосфатов в сыворотке приводит к снижению сердечнососудистой или общей смертности, нет. Обещающие результаты были получены при вторичном анализе клинических исследований по влиянию ФСП на смертность, где улучшение выживаемости наблюдалось у больных на гемодиализе старше 65 лет, леченных бескальциевыми по сравнению с кальций-содержащими ФСП [872]. Однако рандомизированных контролируемых исследований, направленных на поиск взаимосвязи между высоким уровнем фосфатов и сердечнососудистыми исходами у больных без ХБП и с додиализной ХБП, не проводилось. Необходимы дальнейшие исследования с хорошо спланированным протоколом [387].

Изучается ряд других фармакологических подходов к лечению гиперфосфатемии. Никотинамид ингибирует NaPi-2b котранспортёр в кишечнике, уменьшая абсорбцию фосфатов и уровень их в сыворотке крови. Влияние никотинамида на FGF23 не известно и не проводилось исследований комбинации никотинамида и фосфатсвязывающих препаратов [476, 585]. Комбинация может усилить эффекты каждого из этих препаратов, что можно предположить исходя из синергичных эффектов делеции NaPi-2b и назначения севеламера на моделях мышей с ХБП [173, 311, 804, 816].
Поскольку до настоящего времени не проводилось клинических исследований с жесткими конечными точками, исследовавших влияние вмешательств, направленных на коррекцию костно-минеральных нарушений, у больных с ХБП или конечной стадией патологии почек, неясно, насколько они снижают FGF23 и приводят к улучшению клинических исходов. Тем не менее назначение различных препаратов для лечения МКН значительно влияет на уровень FGF23. Назначение севеламера и карбоната лантана, двух кальций несодержащих ФСП, значительно снижало уровень FGF23[386, 520, 862]. Кальцийсодержащие ФСП, по-видимому, не оказывают такого влияния на FGF23, что свидетельствует о том, что эффект ФСП может быть связан не только с изолированным влиянием на фосфаты сыворотки, но и на с другими влияниями, например на костный метаболизм [520]. В другом исследовании при краткосрочном назначении карбоната лантана не было влияния на уровень FGF23, несмотря на значительное снижение уровня фосфатов в моче [469, 527].

Было показано, что лечение вторичного гиперпаратиреоза также влияет на уровень FGF23. Назначение активного витамина D приводит к стимуляции продукции FGF23 и повышению его концентрации [332], тогда как цинакальцет снижает уровень FGF23[332, 950]. Является ли различное влияние этих двух классов препаратов клинически релевантным, пока не ясно. Назначение активного витамина D в наблюдательных исследованиях больных с ХБП и конечной стадией патологии почек было связано со снижением смертности, но клинических исследований, подтверждающих это, не проводилось. Возможным объяснением того, что активный витамин D повышает уровень FGF23, но является клинически эффективным является то, что FGF23 оказывает свои отрицательные эффекты через снижение 1,25-дигидроксивитамина D. Эта гипотеза требует подтверждения. Если повышение FGF23 токсично, то назначение цинакальцета, который не увеличивает кальций, фосфаты и FGF23 в сыворотке должно быть эффективнее, чем лечение активным витамином D. Однако в недавнем
клиническом исследовании, в котором сравнивали лечение цинакальцетом и витамином D. Было показано снижение сердечно-сосудистой смертности [221, 527].

Поскольку FGF23 действует на сердечно-сосудистую систему посредством активации РААС или стимуляции воспаления, возможными подходами к снижению неблагоприятных последствий повышения уровня FGF23 может быть назначение ингибиторов РААС (таких как ингибитор АПФ, APA, MPA) или фармакологических и других мероприятий, снижающих воспаление. Для подтверждения этого необходимы дальнейшие исследования. Поскольку FGF23 может непосредственно воздействовать на миокард, предотвращение этого воздействия требует назначения препаратов, блокирующих действие FGF23 на органы-мишени. В преклинических исследованиях антител к FGF23 у уремических крыс развивалась тяжелая гиперфосфатемия, гиперкальциемия, связанная с гипервитаминозом витамина D, тяжелой кальцификацией и преждевременной смертью [828, 957]. Это предостерегает от непосредственного ингибирования FGF23 без коррекции уровня фосфатов в сыворотке и означает, что повышение FGF23 на самом деле отражает важный регуляторный механизм, и полная его отмена может быть вредна. Окажутся ли полезными селективные или неселективные блокаторы рецепторов к FGF23, необходимо изучить [527]. Возможно, антитела к FGF23 и блокаторы рецепторов к FGF полезны в сочетании с фосфатснижающей терапией или у больных с конечной стадией ХБП, у которых похвальная экскреция фосфатов обычно существенно не влияет на уровень фосфатов в сыворотке [816].

Паратиреоидный гормон в норме и при сердечно-сосудистой патологии

В последние годы было показано, что сердечная мышца подвержена влиянию ПТГ, что ставит ее в один ряд с другими классическими органами-мишениями для ПТГ, такими как почки, кишечник и костная ткань. В экспериментальных работах установлено инотропное, метаболическое, ги-
пертробиосное действие ПТГ на кардиомиоциты [26]. У лиц с первичным гиперпаратиреозом выявлено повышение симпатической активности по данным дисперсии интервала QT на ЭКГ и изучения вариабельности ритма сердца, высокая распространенность АГ, ГЛЖ, кальцификации миокарда и клапанов сердца, различные нарушения ритма [665]. Было установлено, что повышенный уровень ПТГ связан с гипертрофией миокарда ЛЖ в такой же степени, как ИМТ, САД, возраст, пол, наличие ССЗ, прием гипотензивных препаратов[794]. У лиц с ГЛЖ уровень ПТГ был на 14% выше, чем в популяции [406, 746].

Вторичный гиперпаратиреоз у больных с ХСН

Вторичный гиперпаратиреоз был отмечен у пациентов с прогрессирующей ХСН, ожидающих пересадку сердца, и получавших длительное лечение фуросемидом. У этих больных также было установлено снижение минеральной плотности костей, соответствующее остеопении или, в более тяжелых случаях, остеопорозу. Ежедневная дозировка фуросемида у них являлась важным предиктором развития вторичного гиперпаратиреоза [122].

Показано, что при первичном альдостеронизме повышается экскреция кальция почками, толстой кишкой, потовыми и слюнными железами и уровень паратгормона в крови. У крыс, которым вводили альдостерон с целью повышения его сывороточной концентрации до уровня, выявляемого у больных с ХСН, в ответ на выраженную потерю кальция и магния с мочой и калом и последующее снижение концентрации ионизированного кальция и магния в плазме, быстро и стойко повышался уровень паратгормона в крови[512].

В 2006 году Khouzam и соавт. обследовали 9 больных с ХСН IV ФК (5 – нелеченных и 4 – получавших ингибиторы АПФ, фуросемид и спиронолактон в низких дозах) и показали, что у всех этих больных повышен уровень паратгормона в крови [512].
Alsafwah и соавт. выявили повышение ПТГ в сыворотке крови, наряду со снижением ионизованного Ca\(^{2+}\) и Mg\(^{2+}\), у пациентов, госпитализированных по поводу декомпенсации ХСН, длившейся более 4 недель, несмотря на лечение препаратами, блокирующими РААС. Уровень ПТГ не был повышен у пациентов с компенсированной, леченной ХСН и у пациентов без этого заболевания [122].

Механизмы развития вторичного гиперпаратиреоза при ХСН

Развитию вторичного гиперпаратиреоза при ХСН может способствовать гиперальдостеронизм, поскольку при этом, как показано в экспериментах на животных, значительно повышаются потери Ca\(^{2+}\) и Mg\(^{2+}\) с мочой и фекалиями. Это приводит к снижению их концентрации в сыворотке крови, что стимулирует секрецию паратгормона (ПТГ). ПТГ, с одной стороны, способствует поддержанию внеклеточной концентрации Ca\(^{2+}\) и Mg\(^{2+}\) путем повышения абсорбции этих веществ в кишечнике и почках и костной резорбции [873]. С другой стороны, это приводит к снижению минеральной плотности костей и нетравматическим переломам [122].

Применение диуретиков у больных с ХСН приводит к повышению риска развития вторичного гиперпаратиреоза. Это объясняется тем, что применение фуросемида при ХСН увеличивает потерю Ca\(^{2+}\) и Mg\(^{2+}\) с мочой.

Вторичный гиперпаратиреоз является приспособительной (компенсаторной) реакцией на дефицит витамина D; он стремится поддержать уровень 1,25-дигидроксивитамина D в сыворотке. Пациенты с ХСН в связи с выраженными симптомами привязаны к дому и проводят мало времени под воздействием солнечного света, что может способствовать снижению содержания витамина D. Кратковременное 3 раза/нед экспозиция ультрафиолетовых лучей диапазона B или ежедневное назначение препаратов витамина D3 может повысить уровень 25-гидроксивитамина D. Целесообразен ли такой подход у больных с ХСН необходимо изучить [512].
Повышение уровня паратормона в плазме у крыс с альдостеронизмом ассоциируется с отложением Ca2+ в различных тканях, в т.ч. мононуклеарах крови, миоцитах сердца и скелетной мускулатуры; паратиреоидэктомия предотвращает это отложение Ca2+.

Несмотря на снижение внеклеточного уровня Ca2+, повышение уровня ПТГ в крови способствует увеличению внутриклеточного Ca2+ в таких тканях, как сердце, скелетные мышцы, а также в лимфоцитах и мононуклеарах крови (это так называемый кальциевый парадокс), что индуцирует развитие оксидативного/нитрозативный стRESSа [122, 873, 955]. Это сопровождается: а) активацией NADP-оксидазы, источника супероксид-аниона в сосудистой ткани, б) активацией redox-sensitiveядерного транскрипционного фактора(NF)-κB, совместно с экспрессией провоспалительных генов, в) появлением активных форм кислорода (например, супероксида H2O2) и азота (например, пероксинитрита) в различных тканях, и г) снижением активности α1-антипротеиназы в плазме. Активные кислородные и азотные радикалы могут запускать апоптоз, некроз клеток и воспаления с повышением уровня провоспалительных цитокинов, в т.ч. ИЛ-6 и ФНО-α[512]. Т.е. вторичный гиперпараатиреоэоз у больных с ХСН может вносить вклад в системные расстройства, такие как воспаление, оксидативный/нитрозативный стресс в различных тканях и катаболическое состояние, которое включает потерю костной ткани [512]. Это может способствовать поражению различных органов-мишеней при ХСН, что необходимо доказать в дальнейших исследованиях.

Витамин D в норме и при сердечно-сосудистой патологии

Витамин Dшироко распространен в природе и существует в виде нескольких форм. Витамин D3, или холекальциферол, синтезируется под действием ультрафиолетовых лучей в коже из 7-дегидрохолестерола[25]. Витамин D-связывающий белок доставляет его в ток крови [26]. Пищевыми источниками витамина D3 являются продукты животного происхождения: жирная рыба, такая как лосось, сардины, скумбрия, и яичный желток[25].
Витамин D2, или эргокальциферол, образуется путем фотосинтеза в растениях и при облучении эргостерола, мембранного стерола, найденного в спорынье. Пищевыми источниками витамина D2 являются грибы. Искусственно облученные зерновые и молочные продукты содержат витамин D2 и D3[25].

Количество ультрафиолетового излучения, которое достигает поверхности Земли, различается и зависит от времени года, расстояния от экватора, загрязнения окружающей среды и облачности. Способность кожи синтезировать витамин D снижается в пожилом возрасте, при увеличении пигментации кожи и использовании солнцезащитных кремов[117, 157].

В печени витамины D2 и D3 гидроксилируются с образованием 25-гидроксивитамина D (25(OH)D), который является основной циркулирующей формой витамина D и обладает минимальной активностью. В почках под действием 1α-гидроксилазы проксимальных извитых канальцев происходит гидроксилирование 25-гидроксивитамина Dc образованием гормональноактивной формы 1,25-диgidроксивитамина D, или кальцитриола. Посредством активности почечной 1α-гидроксилазы уровень кальцитриола в крови поддерживается в пределах узкого диапазона и сохраняется эукальцемия. Динамический характер этого процесса, а также короткий период полужизни кальцитриола и узкий диапазон нормы, делают кальцитриол неподходящим для клинической оценки уровня витамина D. 25-гидроксивитамина D, напротив, имеет больший период полужизни (недели в сравнении с несколькими часами у кальцитриола). Уровень кальцитриола иногда используется у больных с гипокальциемией, гиперпаратиреозом и уменьшением массы действующих нефронов и отражает активность почечной 1α-гидроксилазы [117, 157].

Витамин D действует посредством связывания с ядерными стероидными рецепторами витамина D, которые найдены во всех тканях, в т.ч. миокарде, гладких мышцах сосудов, эндотелии, лимфоцитах. Расшифровка молекулярной структуры рецепторов к витамину D и выявление его актив-
nosti в неклассических тканях подчеркивает его широкое физиологическое значение и объясняет его экстраскелетные эффекты [776]. Наиболее известный эффект активации рецепторов витамина D связан с его димеризацией с ретиноидный рецептором X. При этом формируется комплекс, служащий фактором транскрипции[414]. Он связывается со специфической промотерной областью и модулирует экспрессию множества генов. Кроме того, неядерные рецепторы к витамину D найдены в мембранах некоторых клеток, включая кардиомиоциты, и могут иметь негеномные функции[271]. Их эффекты, по-видимому, модулируются ядерными рецепторами к витамину D и включают контроль переноса катионов через клеточную мембрану и регуляцию вольтажзависимых кальциевых каналов[117, 987].

Основная роль 1,25-дигидроксивитамина D – поддержание нормальной концентрации кальция в крови. 1,25-дигидроксивитаминD увеличивает продукцию и активность TRPV6 ионного канала кальциндина (кальций связывающего белка) в эпителии кишечника, что способствует абсорбции кальция в кишечнике. При снижении концентрации кальция в крови витамин D и паратгормон вместе мобилизуют кальций из скелета путем активации остеокластов и увеличивают реабсорбцию кальция в дистальных канальцах почек. При снижении кальция ПТГ стимулирует продукцию 1α-гидроксилазы для увеличения продукции 1,25-дигидроксивитаминD[157].

Na kostную ткань кальцитриол оказывает сложное многокомпонентное действие, заключающееся в стимуляции выработки остеокальцина и щелочной фосфатазы остеобластами, сопровождающееся уменьшением синтеза коллагена I типа. В дальнейшем минерализация остеоида под действием производных витамина D происходит в 2 фазы – быструю, с увеличением МПК до 1,4 г/см3, и медленную – до 1,9 г/см3. При этом в молодом возрасте она протекает на фоне повышенного, а в пожилом – на фоне низкого костного обмена [26].
До настоящего времени окончательно не определено, что необходимо считать нормальным уровнем, недостаточностью и дефицитом витамина D. Beveridge дефицитом витамина D предлагает считать его уровень <25 нмоль/л, недостаточностью – уровень < 75 нмоль/л [157, 680].

Классически дефицит витамина D приводит к снижению абсорбции кальция в кишечнике и повышению уровня паратиреоидного гормона, что сопровождается деминерализацией костей как компенсаторной попыткой сохранения концентрации кальция в сыворотке. При хроническом тяжелом дефиците витамина D развивается явная гипокальциемия, но у пациентов редко появляются острые симптомы (например, тремор или судороги). Чаще симптомы дефицита витамина D включают неопределенный локальный или диффузный мышечно-сkeletalный дискомфорт или боль [117].

Наиболее изученным состоянием, ассоциированным с недостаточностью витамина D, является снижение МПК. В пожилом возрасте потеря МПК вследствие дефицита витамина D сопоставима с таковой у молодых при первичном гиперпаратиреозе и составляет 5-10% в год. Этим во многом объясняется полученная в ряде работ связь низких концентраций витамина D (менее 12,5 нмоль/л) с частотой переломов бедренной кости [26].

Другим следствием дефицита витамина D является миопатия. Чаще она встречается у пожилых, что повышает склонность пациентов этой группы к падениям [26].

Показано, что по мере удаления от экватора увеличивается распространённость различных метаболических, аутоиммунных, злокачественных заболеваний [376]. Кроме того, многие заболевания значительно чаще возникают во время периодов пониженной солнечной активности (например, в зимнее время), что свидетельствует о том, что потенциальным механизмом их развития может являться недостаточный синтез витамина D [253, 779]. В эпидемиологических исследованиях показан повышенный риск развития хронических заболеваний при снижении уровня 25-гидроксивитамина D [440]. В последние годы появились доказательства,
что дефицит витамина D является независимым фактором риска развития сердечнососудистых заболеваний и общей смертности в популяции [117, 634, 943].

Механизмы взаимосвязи витамина D и сердечнососудистой патологии не ясны. Было выявлено, что рецепторы к витамину D и 1α-гидроксилаза активно экспрессируются клетками сердечнососудистой системы, в т.ч. кардиомиоцитами, эндотелиальными и гладкомышечными клетками сосудов [219, 983]. В кардиомиоцитах желудочков, выделенных у новорожденных крыс, кальцитриол регулировал количество клеток, вступающих в фазу синтеза клеточного цикла, влияя тем самым на процессы созревания и дифференцировки [683]. Кроме того, в моделях мышей, нокаутных по рецепторам к витамину D, увеличивалась масса миокарда желудочков, повышался уровень предсердного НУП, изменялась активность фибробластов и нарушался синтез металлопротеиназ, что способствовало фиброзу внеклеточного матрикса. Эти изменения в конечном итоге приводили к дилатации желудочков и нарушению электромеханической взаимосвязи [847, 965]. Более того, у крыс, получавших диету с недостаточным количеством витамина D, снижался не только уровень кальция, но и были более высокие уровни САД и КФК сыворотки крови [600]. Наоборот, аналоги витамина D ослабляли выраженность гипертрофии миокарда ЛЖ, связанную с повышенной нагрузкой натрием у сольчувствительных крыс посредством модуляции нескольких протеинкиназных путей [117, 169].

Эндотелиальные клетки экспрессируют рецептор к витамину D и его активация влияет на развитие незрелых клеток, частично путем модуляции элементов реагирования в области промотора сосудистого эндотелиального фактора роста [635]. Аналоги витамина D снижают цитокининдукированную экспрессию молекул адгезии и защищают от продуктов гликирования [607, 757, 879]. Более того, метаболиты витамина D уменьшали эндотелийзависимое сокращение гладкомышечных клеток сосудов и сосудистый тонус в моделях гипертензии, что было опосредовано потоком каль-
ция через эндотелиальные клетки [959]. В моделях у мышей высокие дозы кальцитриола подавляли развитие атеросклероза. Это может быть связано с его иммунномодулирующим эффектом, приводящим к уменьшению макрофагальной и лимфоцитарной инфильтрации атеросклеротических повреждений [878]. Invitro добавление кальцитриола к макрофагам больных диабетом подавляло образование пенистых клеток под действием модифицированных ЛПНП [690]. В клинических исследованиях жесткость артерий была обратно взаимосвязана с уровнем витамина D в общей популяции и у больных с СД, ревматологической патологией, заболеваниями периферических артерий и почечной недостаточностью [117, 370, 550, 581, 725, 751, 763, 765, 976]. У больных, направленных на коронарноангиографию (N=3258) низкие уровни кальцитриола предсказывали увеличение общей и сердечно-сосудистой смертности (приблизительно в 2 раза для нижней квартили кальцитриола) [285]. Однако лишь в малом количестве исследований изучено влияние терапии витамином D на сосудистую функцию и результаты их противоречивы.

Возможными механизмами взаимосвязи между снижением витамина D и атеросклерозом являются активация РААС, гипертензия и воспаление [140, 311]. В различных исследованиях животных и человека показано, что витамин D является негативным регулятором РААС. У нокаутных по рецептору к витамину D мышей, повышенна экспрессия ренина. Это способствовало резкому повышению уровня ангиотензина II и развитию гипертензии, гипертрофии миокарда, задержке натрия и воды. Подобные нарушения наблюдались в природных моделях с дефектом синтеза кальцитриола и устраивались назначением кальцитриола [558]. Эти данные позволяют предположить активную роль витамина D в патогенезе сердечнососудистых расстройств и согласуются с результатами клинических исследований [117, 345, 901]. У больных с нормальным и повышённым АД была выявлена обратная взаимосвязь между уровнем витамина D и активностью ренина в плазме [910-912].
Кроме того, показан антилимфопролиферативный эффект витамина D, распространяющийся на регулирование моноцитарномакрофагальной дифференцировки и секрецию воспалительных цитокинов. Это может способствовать моноцитарной инфилтрации и отложению холестерина в сосудистой стенке, что подтверждается клиническими доказательствами увеличения нестабильности бляшки и развития инфаркта миокарда у лиц с недостаточностью витамина D[117, 377, 690].

У мышей недостаточность витамина D индуцировала кальцификацию меди и малых артерий [464]. У 374 больных с сахарным диабетом недостаточность витамина D также являлась предиктором развития и прогрессирования коронарной кальцификации [975].

Показаны сердечнососудистые эффекты терапии препаратами витамина D у больных с ХБП и гиперпаратиреозом, в т.ч. снижение АД, улучшение электролитного баланса и снижение сердечнососудистой смертности у больных, получающих лечение гемодиализом [505, 525]. Результаты
добавления к терапии препаров витамина D при АГ противоречивы. В некоторых исследованиях показано гипотензивное действие препаратов витамина D, в других это не было подтверждено или было выявлено только снижение САД у больных с исходной недостаточностью витамина D[308, 718, 722, 731, 951, 964].

Воздействие ультрафиолетового излучения также может приводить к снижению АД, независимо от синтеза витамина D. Это было показано как у лиц с АГ, так и без нее [948]. Эффект, по-видимому, связан со снижением сосудистого сопротивления с генерализованной дилатацией сосудов кожи, что частично обусловлено увеличением высвобождения оксида азота из кожного сосудистого русла [199, 315].

В ряде небольших нерандомизированных клинических исследований показано улучшение гликемического контроля на фоне лечения препаратами витамина D, но общество эндокринологов подчеркивает, что убедительных доказательств эффективности терапии препаратами витамина D у больных с сахарным диабетом пока недостаточно [173, 776].

Недостаточность витамина D показала себя независимым фактором риска сердечно-сосудистых событий и общей смертности в нескольких проспективных исследованиях [285, 634]. В большом количестве наблюдательных исследований показана связь снижения сывороточного уровня 25-гидроксивитамина D и сердечно-сосудистых событий [140]. Хотя 25-гидроксивитамин D является предшественником кальцитриола, эти данные не могут быть экстраполированы на супрессию кальцитриола повышенным уровнем фосфатов/FGF23. Эндотелий, гладкомышечные клетки сосудов и макрофаги экспрессируют 1α-гидроксилазу, так что локальный синтез кальцитриола может иметь значение для профилактики сосудистой патологии; в отличие от почечной 1α-гидроксилазы, внепочечный синтез кальцитриола не контролируется FGF23 (поскольку α-Klotho не экспрессируется в этих клетках) [311].
Независимая взаимосвязь недостаточности витамина D и сердечно-сосудистой патологии может свидетельствовать о том, что недостаточность витамина D может быть как причиной, так и следствием ССЗ. Вероятно, достаточное пребывание на солнце может поддерживать нормальный уровень витамина D и у физически активных пациентов с достаточным пребыванием на воздухе выше уровень витамина D и меньше риск ССЗ [117].

Лечение препаратами витамина D для предотвращения смертности у взрослых

В систематическом обзоре 56 рандомизированных клинических исследований (n=95286, возраст 18-107 лет, 77% женщин) произведена оценка эффективности и побочных эффектов препаратов витамина D для первичной и вторичной профилактики смертности у здоровых и больных с хронической патологией в стабильном состоянии (с неврологическими, сердечно-сосудистыми, бронхолегочными и ревматическими заболеваниями). Витамин D назначали в виде витамина D3 (холекациферол), или витамина D2 (эргоакальциферол), или витамина D (1α-гидроксивитамина D(альфакальцидол), или 1,25-дигидроксивитамина D (калцитриол). Длительность терапии составила 4,4 года. У участников 19 исследований уровень витамина D был адекватным (≥20 нг/мл), у участников 26 исследований отмечалась недостаточность витамина D (<20 нг/мл) [161].

Витамин D снижал смертность в 56 исследованиях (n=95286). Причем при раздельном анализе различных форм витамина D было показано, что снижает смертность только витамин D3 (n=75927, 38 исследований). Для предотвращения одного летального исхода необходимо пролечить 150 человек в течение 5 лет. Не выявлено статистических отличий во влиянии терапии препаратами витамина D3 на смертность в подгруппах больных с исходным уровнем витамина D ниже и выше 20 нг/мл, в подгруппах больных, получавших и неполучавших дополнительно препараты кальция, в
подгруппах больных, получавших витамин D3 в дозе ниже и выше 800 ME/сут, а также в подгруппах, включавших только женщин, или только мужных, или представителей обоих полов. Витамин D3 значительно снижал смертность от онкологической патологии (n=44492, 4 исследования). Снижение летальных исходов равно 4 на 1000 пациентов, леченных в течение 5-7 лет. В комбинации с кальцием витамин D3 увеличивал риск нефролитиаза (n=42876, 4 исследования). Витамин D2 (альфакальцидол и кальцитриол) не оказывал значимого влияния на смертность. При анализе подгрупп было показано, что витамин D2 может даже увеличивать смертность, но эти данные могут быть за счет случайных совпадений. Кроме того, препараты витамина D2 увеличивали риск гиперкальциемии (n=710, 3 исследования). В связи с тем еще в 94 исследований препаратов витамина D нет данных о смертности и в 9 исследованиях нечетко указано, как летальные исходы были распределены по группам больных, а также ряд других ограничений проведенных исследований целесообразно проведение дальнейших плацебоконтролируемых рандомизированных исследований [161].

Для избежания недостаточности витамина D целесообразно достаточное пребывание на солнце[440]. На полуденном солнце в течение 5-10 минут вырабатывается около 3000 ME D3 [25]. Поэтому для синтеза достаточного количества витамина D необходима экспозиция лица, рук и ног как минимум по 10-15 минут 3 раза в неделю. Причем кожный синтез повышает уровень витамина D до определенного уровня, при превышении которого пребывание на солнце приводит к спонтанной деградации 25(OH) витамина D[896].

Обогащение продуктов питания витамином D (ультрафиолетовым облучением или прямым добавлением витамина D2) – новая стратегия здравоохранения во многих Европейских странах для предотвращения его дефицита.
Необходимы крупные рандомизированные исследования терапии препаратами витамина D с сердечно-сосудистыми конечными точками для подтверждения роли витамина D в сердечно-сосудистой протекции перед тем как витамин D будет рекомендован для лечения ССЗ[117, 157].

Снижение уровня витамина D при ХСН

В последние годы выявлена взаимосвязь дефицита витамина D с сахарным диабетом, ожирением, дислипидемией, метаболическим синдромом и различными заболеваниями, ассоциированными со снижением иммунитета и развитием системных воспалительных реакций [26]. Взаимосвязь снижения уровня витамина D при ХСН изучена недостаточно.

В большинстве случаев, пациенты с ХСН имеют сниженную толерантность к физическим нагрузкам и поэтому ведут домашний образ жизни, который, в свою очередь, предрасполагает к снижению уровня витамина D. Снижение в сыворотке крови 25-гидроксивитамина D было зарегистрировано у госпитализированных пациентов с ХСН, ожидающих трансплантацию сердца. Недостаточность витамина D была диагностирована у ряда негоспитализированных пациентов с ХСН европейской расы, а также у компенсированных и декомпенсированных госпитализированных больных с СН и ФВ ЛЖ<35%. У афроамериканцев гиповитаминоз D широко распространен, что связано с высоким содержанием меланина в коже. Известно, что меланин является естественным солнцезащитным веществом, поэтому при высоком его содержании требуется более длительное воздействие солнечного света на кожу для выработки витамина D. Также меланин поглощает тепло, и, следовательно, может способствовать тому, что пациенты избегают воздействия солнечных лучей в теплые летние месяцы, что приводит к снижению уровня витамина D[122].

Снижение 25-гидроксивитамина D приводит к нарушению Ca2+-гомеостаза. Это может быть обусловлено не только сокращенным воздействием солнечных лучей, но также с неспособностью стареющей кожи
к адекватной выработке витамина D, ожирением, поскольку адипоциты се-квестрируют его, и снижением потребления Ca2+ с пищей [439].

В исследовании Schleithoff и др. мужчинам с ХСН (средний возраст 55 лет) рандомизировано в течение 9 месяцев назначали либо плацебо, либо витамин D (50 мкг/сут; 2000 МЕ/сут). Несмотря на то, что авторы не обнаружили влияния витамина D на функцию левого желудочка и выживаемость при наблюдении в течение 15 месяцев, при лечении витамином D снижалась концентрация ФНО-α в сыворотке. В отличие от этого, концентрация противовоспалительного интерлейкина-10 увеличивалась. Это подтвердило, что добавление витамина D благоприятно влияет на иммунномодулирующие цитокины, и, возможно, имеет кардиопротективный эффект. Кроме того, большие высокие дозы витамина D имеют большее влияние на регулирующие молекулы иммунной системы [806], поскольку в исследовании Witten Clark при назначении витамина D в дозе 10 мкг/сут (400 МЕ/сут) влияния его на концентрацию цитокинов не отмечалось [222]. В исследовании Mahon было показано умеренное влияние витамина D в дозе 25 мкг/сут (1000МЕ/сут).

Опорно-двигательный аппарат как орган-мишень при ХСН: костный метаболизм, остеопороз

XCH и остеопороз – два хронических состояния, часто встречающихся у лиц пожилого возраста. Они ассоциированы с высокой заболеваемостью и смертностью, приводят к длительной нетрудоспособности, инвалидизации и снижению качества жизни [103].

Остеопороз характеризуется снижением прочности костной ткани и увеличением риска развития переломов. Распространенность остеопороза увеличивается с возрастом с 6% в 50 лет до 50% после 80 лет. В России остеопорозом страдают около 14 млн человек: 34% женщин и 27% мужчин в возрасте старше 50 лет [36].
Социальная значимость остеопороза определяется его последствиями – переломами позвонков и периферических костей, которые приводят к высокому уровню нетрудоспособности, инвалидизации и смертности [36]. Связанные с остеопорозом переломы могут случиться с вероятностью 50% у женщин и 20% у мужчин старше 50 лет. Причем у лиц, у которых уже случился обусловленный остеопорозом перелом, риск повторных переломов увеличивается [754]. У многих больных с сердечнососудистой патологией, в т.ч. ХСН, имеются факторы риска развития остеопороза, такие как пожилой возраст, низкая физическая активность и другие. Изучение ассоциации ХСН и остеопороза важно для оптимизации лечебного воздействия с целью замедления или предотвращения развития инвалидизации, улучшения качества и увеличения продолжительности жизни больных [103].

Показано, что у больных с ХСН и выраженным снижением массы тела (>6% по сравнению с исходной нормальной массой тела в течение >6 месяцев, т.е. сердечной кахексии) вместе с истощением мышечной и жировой ткани снижается костная масса [133]. У больных с ХСН, направленных на трансплантацию сердца, выявлено снижение минеральной плотности кости (МПК), причем низкая МПК перед трансплантацией увеличивала риск развития переломов после трансплантации, которые в первую очередь были следствием лечения высокими дозами глюкокортикоидов и циклоспорином [159].

Состояние костной системы у больных со стабильной ХСН без кахексии изучалось редко [580]. В нескольких исследованиях последних лет было показано, что МПК снижена приблизительно у 50% пожилых пациентов со стабильной ХСН, остеопороз встречался у 19-35% [1, 103, 351, 481, 806].

В единственном проспективном исследовании МПК у больных с ХСН было выявлено, что снижение костной массы у больных с ХСН в течение 2 лет сопровождалось увеличением жировой массы и не сопровождалось изменениями тощей массы тела [481]. Тощая масса тела, измерен-
ная с помощью двухэнергетической рентгеновской абсорбциометрии (ДРА), очень точно отражает скелетную мышечную ткань [580]. На основании полученных данных было предположено, что костная ткань представляет собой компартмент организма, который истощается в первую очередь при ХСН за счет ее более высокой чувствительности к снижению запасов анаболических ресурсов, чем у мышечной и жировой ткани. Для подтверждения этого мнения необходимы широкомасштабные проспективные исследования [933].

Кроме измерения МПК, оценить индивидуальный риск снижения костной массы помогают маркеры костного ремоделирования. Они могут использоваться для характеристики костного метаболизма и определения механизмов снижения костной массы. В одном исследовании у больных с ХСН было показано повышение уровня маркера остеосинтеза остеокальцина и маркера костной резорбции С-концевого телопептида коллагена I типа (β-CrossLaps) [180]. В другом исследовании было показано выраженное повышение маркеров костной резорбции у больных с ХСН, которое негативно коррелировало с ФВ ЛЖ[351]. Однако маркер остеосинтеза (BAP) оставался в пределах нормального уровня [829]. На основании этого, авторы сделали вывод, что снижение костной массы при ХСН является, главным образом, следствием повышенного разрушения кости, которое не компенсируется соответствующим уровнем остеосинтеза [351, 580, 829].

Снижение МПК и нарушение костного метаболизма при ХСН увеличивает риск переломов [1]. Самое грозное осложнение остеопороза – перелом шейки бедра, который ассоциирован с высоким риском смерти, а среди выживших больных приводит к снижению трудоспособности и потребности в длительном лечении. Возникновению переломов при ХСН способствует низкая физическая активность, которая увеличивает риск падений [580]. В одном исследовании было показано, что при ХСН риск переломов в 4 раза выше, а риск перелома шейки бедра в 6,3 раз выше, чем при другой сердечно-сосудистой патологии. Переломы случались у 4,6%
стабильных больных с ХСН без кахексии в течение 12 месяцев по сравнению с 1% в группе контроля, переломы шейки бедра – у 1,3% больных с ХСН по сравнению с 0,1% пациентов из группы контроля [917]. В другом исследовании частота переломов шейки бедра при ХСН была в 2 раза выше, чем у больных без нее. При этом у больных с ХСН и переломом шейки бедра в 2 раза выше был риск смерти, чем при изолированной ХСН [207].

Взаимосвязь костной, мышечной и жировой ткани при ХСН

Главным фактором здоровья кости и защитой от снижения костной массы часто являются нормальная мышечная масса тела и механическая стимуляция от мышц. Предшествующие исследования показали, что снижение костной и мышечной массы при ХСН прямо пропорциональны. Это можно объяснить снижением механического воздействия мышц на скелет из-за меньшей физической активности или параллельного снижения мышечной и костной массы вследствие преобладания катаболических над анаболическими процессами [580].

По данным эпидемиологических исследований, хорошим отражением костной массы являются масса тела и индекс массы тела (ИМТ). Высокий ИМТ рассматривается в качестве протектора от развития остеопороза у мужчин и женщин, в то время как худощавость – главный фактор риска развития остеопоретических переломов. Это может быть связано с тем, что большая масса тела увеличивает механическую нагрузку для костей скелета, как динамическую, вызванную мышцами, так и пассивную, обусловленную повышенной массой тела, что в конечном итоге влияет на остеогенез. В последние годы этот взгляд на взаимодействие жировой и костной ткани изменился. Было показано, что увеличение жировой массы неблагоприятно влияет на кости, тогда как увеличение толщей массы – положительно. Механизм, лежащий в основе обратной взаимосвязи между жировой и костной массой не до конца понятен. В настоящее время проверяется гипотеза о том, что на состояние кости влияют адипоцит-связанные гормо-
ны. Недавно получены данные, что в процесс ремоделирования костей может быть вовлечен адипонектин. У больных с ХСН концентрация адипонектина в сыворотке повышается, связана с тяжестью заболевания и ухудшением прогноза. В одном из недавних исследований выявлено, что повышение концентрации адипонектина в сыворотке у пожилых больных с ХСН без кахексии независимо взаимосвязано со снижением МПК. Адипонектин непосредственно воздействует на кость, индуцируя пролиферацию и дифференциацию остеобластов и увеличивая образование остеокластов путем стимуляции лиганда (RANKL) рецептора активаатора ядерного фактора кВ (RANK) и ингибирования продукции остеопротегерина остеобластами. RANKL, как показано, является сильным стимулом костной резорбции. RANKL связывается с рецептором ядерного фактора кВ (RANK) для стимуляции созревания остеокластов и резорбции кости. Связывание остеопротегерина с RANKL ингибирует активацию RANK и созревание остеокластов, что предотвращает резорбцию кости [753]. Повышение уровня адипонектина в сыворотке обратно взаимосвязано с МПК. У больных с ХСН была выявлена значительная положительная корреляция между концентрацией адипонектина в сыворотке и уровнем RANKL [180, 580]. Т.е. повышение уровня адипонектина при ХСН может способствовать развитию остеопороза.

Другим веществом, которое продуцируется адипоцитами и играет важную роль во множестве физиологических процессов, в т.ч. остеосинтезе и костной резорбции, является лептин. Он влияет на костную ткань как непосредственно действуя на остеобласты и стромальные клетки костного мозга, так и через центральную нервную и симпатоадреналовую системы (САС). Его влияние на костную ткань в различных исследованных популяциях и моделях животных было разнонаправленным. У мышей с недостаточностью лептина наблюдалась высокая костная масса. У больных с ХСН недавно была показана независимая обратная взаимосвязь между концентрацией лептина и МПК. Причем в многофакторной статистической моде-
ли у больных с ХСН влияние жировой массы на костную ткань было сильнее, чем адипонектина и лептина на кость, что свидетельствует о том, что жировая ткань может влиять на кость не только через адипокины [580]. Другие механизмы взаимосвязи жировой и костной ткани предстоит установить.

Недавние исследования выявили, что кость является эндокринным органом, который оказывает воздействие на скорость обмена веществ посредством нового гормона - остеокальцина. В моделях животных остеокальцин воздействует на адипоциты, индуцируя секрецию адипонектина, который вторично снижает инсулинорезистентность. При ХСН тоже недавно выявлена положительная взаимосвязь между адипонектином и остеокальцином, значение которой предстоит понять [580].

Костный метаболизм

В последние 25 лет для оценки состояния костной ткани стали широко применять маркеры резорбции и образования кости, которые более точно, чем предыдущие (ЩФ и гидроксипролин), отражают процессы в хрящевой и костной ткани. Биохимические маркеры ремоделирования костной ткани (костные маркеры, маркеры костного метаболизма) принято подразделять на 3 группы: 1) ферменты или белки, которые секретируются клетками, участвующими в процессе ремоделирования; 2) продукты распада, появляющиеся в процессе резорбции старой кости; 3) побочные продукты, образующиеся при синтезе новой кости. Поскольку процессы резорбции и образования кости являются взаимосвязанными и сопряженными друг с другом, эти маркеры в целом отражают костный обмен, тем не менее маркеры принято разделять на маркеры резорбции и образования кости. Поскольку процесс резорбции гораздо короче, чем процесс образования кости, маркеры резорбции являются более изменчивыми, чем маркеры образования кости [26].
Маркеры костеооразования включают прямые и косвенные продукты активности остеобластов. Остеокальцин — небольшой неколлагеновый белок, связывающий гидроксиапатит. Между уровнем остеокальцина и скоростью костеобразования, оцениваемой гистоморфометрическим методом, получена тесная корреляция, что позволяет считать остеокальцин специфическим маркером остеобластов [26].

Маркеры резорбции кости — это в основном различные продукты деградации коллагена Iтипа, среди которых особого внимания заслуживают те его фрагменты, в состав которых входят поперечные сшивки, соединяющие молекулы зрелого коллагена — телопептида. Сшивки, являющиеся по своей химической структуре преимущественно пиридинолинами, формируются в костном матриксе в области С- и N-концевых участков (С- и N-телопептиды) молекул коллагена и связывают их со спиралевидными участками соседних молекул. В процессе резорбции кости происходит вывобождение N- и С-телопептидов. Их уровень отражает близкую по времени к моменту исследования суммарную активность остеокластов, что и позволяет отнести телопептиды к более надежным маркерам остеокластической резорбции кости [26].Взаимосвязь маркеров ремоделирования костной ткани и поражения ССС мало изучена[53].

Костный метаболизм при ХСН

Маркеры метаболизма коллагена

СН связана с метаболическими нарушениями, которые воздействуют на костный метаболизм и предрасполагают к чрезмерной потере костной ткани [481, 962].Снижение кишечной абсорбции кальция и магния вследствие отека кишечной стенки и их потери с мочой вследствие диуретической терапии и альдостеронизма, дисфункция почек, низкая физическая активность и малое пребывание на солнце при ХСН могут способствовать снижению уровня витамина D, что влияет на костный метаболизм [829, 962, 990].
Ву и соавт. определили маркеры костного метаболизма у 14 лиц контрольной группы, 20 пациентов с умеренной CH и 34 больных, которым имплантировали устройства, поддерживающие работу ЛЖ (УПРЛЖ), и у 34 пациентов при эксплантации УПРЛЖ. По сравнению с контрольной группой при CH были выше ПТГ, ниже 25-гидроксивитаминD. Проколлаген-I N-терминальный пептид (P1NP) и остеокальцин были сравнимы, а сшитый C- и N-телопептиды коллагена I типа (CTX и NTX) были выше при CH. P1NP значительно увеличивался после имплантации УПРЛЖ с умеренным снижением уровней CTX и NTX, показывая сдвиг в сторону преобладания анаболических процессов в кости [962].

Известно, что коллаген – самый распространенный белок в организме и сывороточные маркеры метаболизма коллагена могут быть неспецифичны для костной ткани. Они изменяются при ССЗ, отражая развитие фиброза сердца [583], печени [341] и легких [618]. Более того, сывороточные маркеры обмена компонентов внеклеточного матрикса имеют клиническое значение при ССЗ, таких как ИБС [565, 566], ГКМП [438, 930] и CH [567, 929]. Изменения количества и качественного состава внеклеточного матрикса, включая коллаген (например, превышение синтеза коллагена над его деградацией приводит к накоплению волокон коллагена), участвуют в ремоделировании миокарда, способствуя нарушению функции ЛЖ и развитию симптомов CH [583].

Коллаген I-го типа составляет более 90% органического матрикса кости и синтезируется непосредственно в костях. Во время обновления костной ткани коллаген I-го типа деградирует, а небольшие пептидные фрагменты попадают в кровь. Эти фрагменты могут быть исследованы как в моче, так и в сыворотке. Один из них - C-концевой телопептид, образующихся при деградации коллагена I типа (CrossLaps™). Доказано, что маркер CrossLaps™, можно использовать при терапии препаратами, снижающими резорбцию костей, у пациентов с болезнями, связанными с нарушениями метаболизма костной ткани.
Остеопротегерин

В последние годы активно изучается система Остеопротегерин — RANKL — RANK, компоненты которой рассматриваются в качестве основных сигнальных механизмов, контролирующих резорбцию кости в физиологических и патологических условиях. Остеопротегерин, также известный как остеокластингибирующий фактор или остеокластсвязывающий фактор, относится к группе регуляторных белков семейства α-ФНО, который синтезируется клетками остеобластического ряда и играет ключевую роль во многих физиологических процессах. Молекула остеопротегерина содержит 401 аминокислотный остаток и 7 структурных доменов, существует в двух основных формах: монодимера и гомодимера (молекулярная масса 60 и 120 кДа соответственно). При этом последняя проявляет более высокую биологическую активность по сравнению с монодимерической формой. Необходимо отметить, что домены 1—4 опосредуют ингибирование остеокластогенеза, домены 5 и 6 проявляют проапоптотический потенциал, а домен 7 непосредственно формирует гепаринсвязывающую активность молекулы. Ген, кодирующий образование остеопротегерина у человека, расположен в длинном плече 8-й хромосомы и состоит из пяти экзонов [41][9].

Остеопротегеринсвязывается с лигандом активатора рецептора ядерного фактора транскрипции каппа В (NF-κB) — RANKL. Этим остеопротегерин блокирует взаимодействие между активатором рецептора NF-κB (RANK, рецептором остеокластов) и его лигандом (RANKL) на поверхности предшественников остеокластов, ингибирует конечную стадию дифференцировки остеокластов и резорбцию кости. В экспериментальных исследованиях показана способность остеопротегерина снижать или предотвращать резорбцию кости. Так, ингибитирующее действие остеопротегерина на образование остеокластов подтверждено данными о том, что у трансгенных мышей он значительно уменьшает количество этих клеток, не влияя на популяцию макрофагов, являющихся их предшественниками. По-
этому очевидно, что остеопротегерин (как антагонист RANKL) и RANKL (как цитокин, регулирующий дифференцировку активности остеокластов) вовлечены в патогенез остеопороза и других метаболических заболеваний скелета [46].

RANKL продуцируется остеобластами и Т-лимфоцитами. Он активирует специфический рецептор RANK, который расположен на остеокластах и дендритных клетках. RANKL является основным стимулирующим фактором в образовании зрелых остеокластов. Поэтому увеличение экспрессии RANKL приводит к резорбции костной ткани и, следовательно, к потере костной массы. Являясь «ловушкой» (ложным рецептором) для RANKL, остеопротегерин ингибирует связывание RANK и RANKL, тем самым ингибирует остеокласты и резорбцию кости. Полагают, что характер ремоделирования костной ткани во многом определяется балансом между продукцией RANKL и остеопротегерина. Например, имеются данные о том, что недифференцированные стромальные клетки костного мозга в большей степени экспрессируют RANKL и в меньшей степени остеопротегерин. Повышенное соотношение RANKL/остеопротегерин ассоциируется со способностью поддерживать формирование и активацию остеокластов. Когда клетки дифференцируются, соотношение RANKL/остеопротегерин уменьшается и параллельно снижается стимуляция остеокластогенеза. Дисбаланс системы RANKL/RANK/остеопротегерин приводит к серьезным нарушениям ремоделирования кости, которое лежит в основе разрушения кости при остеопорозе, болезни Педжета, костных потерях при метастазах рака и ревматоидном артрите и др.[87, 88][17].

Экспрессия остеопротегерина обнаружена во многих тканях (легкие, сердце, почки, печень, желудок, кишечник, головной и спинной мозг, щитовидная железа, плацента и кости), но за исключением угнетения дифференцировки и активности остеокластов, его биологическая роль полностью неизвестна [12, 18]. Нокаут гена остеопротегерина у мышей приводит
не только к тяжелому остеопорозу резорбции кости, но и к глубокой кальцификации крупных артерий, а также выраженной пролиферации интимы и меди сосудов [19][87].

Наибольшая экспрессия RANKL наблюдается в костях, костном мозге и лимфоидной ткани (лимфатические узлы, вилочковая железа, селезенка, печень плода, пейеровы бляшки). Основная его роль в костной ткани – стимуляция дифференцировки, активности и подавление апоптоза остеокластов. В отсутствии RANKL у мышей наблюдается тяжелый остеопетроз, нарушается прорезывание зубов, полностью отсутствуют остеокласти, нарушается ранняя дифференцировка T- и B-клеток, лимфатических узлов и тимуса [20, 21][87].

Помимо участия в костной резорбции система Остеопротегерин/RANKL/RANK принимают активное участие в регулировании ангиогенеза, неоваскуляризации и клеточного звена иммунитета [37]. Действительно, в процессе эмбриогенеза гемопоэтические клетки, остеобласты, эндотелиоциты, гладкомышечные клетки меди артерий и вен, а также клетки стромы костного мозга формируются из общей клетки-предшественницы [8]. Это объясняет факт экспрессии на поверхности их мембран специфических рецепторов, опосредующих сродство к основным регуляторным белкам остеогенеза, таким как остеопротегерин, остеопонтин, остеокальцин, RANKL морфогенетический белок кости 2 [14, 16]. Установлено, что остеопротегерин является одним из важнейших регуляторов депонирования кальция в стенке сосудов, опосредуя повышение их жесткости и ригидности. При этом остеопротегерин экспрессируется в стенке артерий и в физиологических условиях, тогда как RANKL, RANK и остеокласти обнаруживают исключительно при кальцификации меди [10] [9].

Остеопротегерин также способен связываться и с другим важнейшим представителем суперсемейства ФНО — TRAIL, который функционирует как гомотример и экспрессируется на поверхности клеточных мем-
бран в качестве трансмембранного протеина II типа. Внеклеточный домен TRAIL подвергается протеолитической фрагментации и выступает в качестве растворимого рецептора для многих цитокинов. Биологический потенциал TRAIL реализует посредством связывания с четырьмя специфиче-

сими рецепторами, два из которых (TRAILreceptor 1/deathreceptor 4 и TRAILreceptor 2/deathreceptor 5) содержат гомологичные последовательно-

сти, специфичные для домена Fas и рецептора-1 ФНО, а также опосредуют апоптоз через активизацию системы каспаз. Рецепторы 3 и 4 TRAIL, взаи-

модействуя с остеопротегерином, модулируют декодинг всех типов рецеп-

торов для TRAIL [18]. Рецепторы 1-го и 2-го типов для TRAIL широко представлены на поверхности эндотелиоцитов и гладкомышечных клеток мезени сосудов. В экспериментах было установлено, что блокада рецепто-

ров 1-го и 2-го типов рекомбинантными антителами обеспечивает проли-

ферацию и повышение выживания этих клеток посредством активации Akt/MAP-киназ и внеклеточного сигналрегулируемого киназного меха-

низма [50] [9].

Основными индукторами синтеза остеопротегерина являются про-

воспалительные цитокины, продуцирующие преимущественно моно-

нуклеарными фагоцитами, в частности интерлейкины (ИЛ) ИЛ-1β, ИЛ-2 и ИЛ-6, а также моноцитарный хемоаттрактантный протеин-1. При этом циркулирующий пул остеопротегерина проявляет слабую корреляционную взаимосвязь с концентрациями С-

реактивного протеина и ИЛ-6. Установлено, что invivo остеопротегерин депонируется в тельцах Вейбеля— Палладе эндотелиоцитов и после стимуляции секретируется в виде ком-

плекса с фактором Виллебранда. В целом необходимо отметить, что регулирующее влияние в отношении продукции и секреции остеопротегерина, которое проявляют различные факторы, такие как цитокины (ФНО-α), ин-

терлейкины (ИЛ-1α, ИЛ-1β, ИЛ-6, ИЛ-11, ИЛ-17, ИЛ-18), регуляторные пептиды (трансформирующий фактор роста β), гормоны (эстрогены, ПТГ, глюкокортикоиды), витамины (D3) и т. п., обычно не зависит от вида тка-
ни. Так, ИЛ-1α, ИЛ-18, ФНО-α, витамин D3, эстрадиол способствуют повышению экспрессии остеопротегерина на поверхности эндотелиоцитов, гладкомышечных клеток, в остеобластах и клетках стромы костной ткани. Напротив, ИЛ-1β, ИЛ-6, ИЛ-11, ИЛ-17, глюкокортикостероиды, простагландин Е2 препятствуют этому процессу [9].

В физиологических условиях циркулирующий остеопротегерин присутствует в плазме крови в низких концентрациях [44]. Ожидаемая концентрация в сыворотке крови у здоровых лиц составляет 35 пг/мл (95 % доверительный интервал (ДИ) — 4—54 пг/мл) [44]. При этом необходимо иметь в виду, что значительную элевацию циркулирующего уровня остеопротегерина (более 100 пг/мл) обычно рассматривают как маркер лимфопролиферативных заболеваний, в частности миеломной болезни, а также она может быть обнаружена при многих злокачественных новообразованиях, таких как аденокарцинома предстательной железы, рак молочной железы и кишечника. У пациентов с ХСН значение остеопротегерина практически не изучено [9].

Рекомбинантный остеопротегерин человека обладает антирезорбтивным действием как invitro, так и при подкожном введении животным с остеопорозом. Р.J. Bekker и соавт. [22] провели первое клиническое рандомизированное плацебо-контролируемое двойное слепое исследование 52 женщин в постменопаузе, которым вводился рекомбинантный остеопротегерин человека. Уже к 12-му часу после однократного подкожного введения препарата наблюдалось значимое снижение уровня С-концевого телопептида коллагена I типа в моче. Максимальное снижение этого показателя (примерно на 80%) отмечено на 4-й день после инъекции рекомбинантного остеопротегерина человека в дозе 3 мг/кг. Уровень костного изофермента щелочной фосфатазы (маркера костеобразования) не менялся в течение 3 недель после введения изучаемого препарата, а к 6-й неделе — снижался на 30%. Действие препарата после однократного введения сохранялось более 6 недель и не сопровождалось заметными побочными эффектами.
Отдаленные эффекты остеопротегерина в отношении МПК, частоты переломов и состояния сердечно-сосудистой системы, требуют дальнейшего изучения. В тоже время применение остеопротегерина открывает широкие перспективы лечения остеопороза, а возможно, и других заболеваний, сопровождающихся повышенной костной резорбцией [87, 88].

Остеопротегерин как биологический маркер сосудистого ремоделирования

При проведении ряда экспериментальных исследований были получены доказательства участия остеопротегерина в процессах кальцификации артериальной стенки и клапанов сердца, формировании дисфункции эндотелия артерий и кардиальном ремоделировании, а также атеросклерозе и атеротромбозе. Так, обнаружена избыточная экспрессия остеопротегерина в меди стенок аорты и ее ветвей мышей с антропометрическим тяжелым остеопорозом [7]. Выраженность кальцификации сосудистой стенки тесно ассоциировалась с экспрессией остеопротегерина. Исследователи обратили внимание на то, что у мышей линии остеопротегерин+/+ по сравнению с остеопротегерин−/− при использовании высоких доз фосфатов или витамина D3 выраженность кальцификации стенок аорты была существенно меньше, несмотря на достаточно высокий циркулирующий уровень остеопротегерина. Это повлияло на формирование мнения о том, что последний может выступать в качестве протектора кальцификации сосудов при длительном приеме варфарина или витамина D3 [5, 34][9].

С другой стороны, в эксперименте при использовании атерогенной диеты у мышей линии остеопротегерин−/− циркулирующий уровень остеопротегерина быстро и существенно увеличивался, а экспрессия RANKL снижалась [41]. В последующем, несмотря на прогрессирование атеросклероза, концентрация остеопротегерина оставалась стабильно высокой, тогда как mPHK-RANKL обнаруживали в возрастающих титрах. При этом экспрессия последней позитивно коррелировала с количеством атером, но не с общей площадью атеросклеротического поражения. Исследо-
ватели пришли к заключению, что остеопротегерин является индикатором формирования атеросклероза, ноне его тяжести или риска прогрессирования[9].

В связи с этим, хотя экспрессия остеопротегерина обнаружена в атеромах, особенно «угрожаемых», на поверхности циркулирующих предшественников эндотелиоцитов, в «пенистых» клетках, фибробластах гладкомышечных клетках сосудистой стенки, роль остеопротегерина как модулятора атеросклеротического поражения не вполне понятна [32, 43]. Предполагают, что остеопротегерин опосредует формирование специфического остеогенного фенотипа для указанныхвыше клеток посредством RANKL-зависимой активации экспрессии морфогенетического протеина кости 2, оказывающего пролиферативный эффект в отношении гладкомышечных клеток сосудистой стенки [2, 12, 45]. Не исключено, что последний способен повышать локальную тканевую активность матриксных металлопротеиназ-2, -3 и -9, а также щелочной фосфатазы инициировать депонирование кристаллов кальция[25]. Кроме того, через активацию матриксных металлопротеиназ остеопротегерин способен влиять на репозицию внеклеточного матрикса, что рассматривают в качестве ключевого механизма формирования феномена «усталости» покрышки атеромы и может предрасполагать к ее разрыву [36, 42][9].

С другой стороны, инфильтрация субинтимных артерий ремнантами липопротеинов низкой плотности приводит к продукции провоспалительных цитокинов, которые через стимуляцию синтеза остеопротегерина вовлекают клеточные компоненты атеромы востеогенез и потенцируют кальцификацию покрышки и сосудистой стенки. Вместе с тем череззвловечение TRAIL-рецепторов остеопротегерин реализует антиапоптотический потенциал в отношении эндотелиоцитов и гладкомышечных клеток сосудистой стенки, препятствуя депонированию кальция [47][9].

Таким образом, результаты исследований на животных свидетельствуют о протективной роли остеопротегерина при сосудистом ремоделировании.
ровании. Напротив, данные, полученные в ходе клинических наблюдений, имеют противоречивый характер. Так, остеопротегерин избыточно экспрессируется в стенке аорты и ее ветвей в ответ на стимуляцию некоторыми цитокинами и, вероятно, принимает участие в формировании аневризмы аорты, в том числе и расслаивающих. Однако четкой зависимости между скоростью расширения аневризмы аорты и повышением экспрессии остеопротегерина в стенке сосудов пока не выявлено. С другой стороны, содержание в сосудистой ткани остеопротегерина при аневризмах, ассоциированных атеросклеротическим процессом, и аневризмах аорты иной этиологии может существенно отличаться. Кроме того, серьезное значение может иметь и локализация аневризматического повреждения. Так, наиболее высокая экспрессия остеопротегерин винтиме и медии наблюдается у больных с аневризмой брюшной аорты, превышая референсные значения более чем в 12 раз. В когорте больных саневризмой грудного отдела аорты элевация тканевой экспрессии остеопротегерина в 7—8 раз выше нормальных значений, а у больных с атеросклерозом степень увеличения экспрессии остеопротегерина превышает норму более чем в 3 раза [39]. Данные факты свидетельствуют об ассоциативных взаимосвязях между колебаниями уровня остеопротегерина в стенках сосудов и стадией развития аневризм стенки аорты. Вместе с тем диагностическая и прогностическая ценность этого феномена не установлена и требует уточнения, хотя возможностиследования остеопротегерина в целях проведения дифференциальной диагностики между атеросклеротическими и иными причинами формирования аневризм стенки аорты и ее ветвей вызывает заинтересованность[9].

Необходимо принять во внимание и наблюдения, свидетельствующие о тесной ассоциации между циркулирующим уровнем остеопротегерина и кальцификацией артерий, которую рассматривают как независимый от возраста, пола, курения, гиперлипидемии и других традиционных факторов сердечно-сосудистого рискамаркер возникновения аневризм аорты и ее
ветвей [9, 38, 39]. В то же время при перекрестном исследовании оказалось, что плазменная концентрация остеопротегерина позитивно коррелирует именно с тяжестью стенотических поражений периферических артерий, причем достоверных различий в абсолютном уровне циркулирующего остеопротегерина у здоровых и больных с документированным атеросклерозом не обнаружено [50][9].

Вместе с тем существуют попытки использовать оценку плазменной концентрации остеопротегерина для объективизации степени раннего сосудистого ремоделирования, опосредованного процедурами ангиопластики. Имеются данные, что остеопротегерин является достаточно мощным предиктором возникновения микроваскулярной обструкции, развивающейся непосредственно после перкутанной ангиопластики и существенно снижающей эффективность процедуры[13]. В то же время прогностическая ценность определения остеопротегерина в этой когорте пациентов требует уточнения [9].

Остеопротегерин как возможный маркер эндотелиальной дисфункции

Попытки объяснения возможной прогностической роли остеопротегерина при атеросклерозе были основаны на существовании ассоциации между остеопротегерином и выраженностью дисфункции эндотелия у больных сахарным диабетом 1 и 2 типов [11]. Так, в ряде исследований у пациентов с сахарным диабетом 2 типа получены доказательства тесной и позитивной взаимосвязи между содержанием остеопротегерина, с одной стороны, и наличием атеромы, выраженностью нарушения перфузии миокарда при проведении позитронной эмиссионной томографии, глобальной величиной сердечно-сосудистого риска, с другой[3, 4]. При этом уровень остеопротегерина был достоверно выше у тех больных, у которых на протяжении последующих 6 лет наблюдения зарегистрировано любое кардиоваскулярное событие [4]. Причем при мультивариантном анализе оказалось, что увеличение циркулирующего уровня остеопротегерина выше 8
пмоль/л независимо ассоциируется с нарушением перфузии миокарда (ОШ = 4,2; р = 0,01) [4] [9].

Более того, при применении инсулина на протяжении 6 мес плазменная концентрация остеопротегерина существенно снижалась пропорционально улучшению эндотелийзависимой вазодилатации, что несколько противоречило данным, полученным ранее [47]. Однако впоследствии реверсия уровня остеопротегерина и улучшение механических качеств эндотелия были обнаружены и при назначении тиазолидиндионов [19, 49] [9].

Таким образом, остеопротегерин является одним из наиболее вероятных кандидатов в маркеры «немой» ишемии миокарда у больных сахарным диабетом, что может повлиять на модификацию принципов стратификации таких пациентов в группу высокого риска возникновения ИБС [9].

Ассоциация циркулирующего остеопротегерина и традиционных факторов сердечно-сосудистого риска

Полагают, что именно во многом благодаря остеопротегерину обнаруживают тесную взаимосвязь между интенсивностью системной и локальной провоспалительной активации, атеросклерозом и метаболическими коморбидными состояниями. Так, выявлена тесная ассоциация между концентрацией остеопротегерина, риском возникновения мозгового ишемического инсульта, ИБС, функциональным классом стабильной стенокардии напряжения у пациентов с документированной ИБС, а также тяжестью атеросклеротического поражения коронарных артерий, оцениваемой по суммарной величине стеноза последних [23] и количеству вовлеченных в процесс артерий [48, 23]. При этом у пациентов с острым коронарным синдромом (ОКС) плазменное содержание остеопротегерина достоверно выше, чем у здоровых и больных с ангиографически подтвержденной стабильной ИБС [48]. Более того, повышение содержания остеопротегерина на каждые 1 нг/мл сопровождается пятикратным увеличением риска возникновения ИБС (ОШ = 5,2; 95 % ДИ — 1,7—16,0; р< 0,01) [23]. Кроме того,
остеопротегерин обладает высокой предсказывающей ценностью в отношении наступления смертельного исхода при долгосрочном наблюдении у пациентов с ОКС и мозговыми ишемическими инсультом [20, 22] а также у больных со стенокардией напряжения, инфарктом миокарда, ОКС [46] [9].

Уровень остеопротегерина тесно связан и с другими традиционными факторами сердечно-сосудистого риска, такими как мужской пол, возраст, курение, гиперлипидемия, содержание С-реактивного протеина в крови. Для пациентов с документированной ИБС увеличение уровня остеопротегерина в плазме крови выше 5304,7 пг/мл характеризуется наличием тесной взаимосвязи с показателем кардиоваскулярной и общей смертности. При использовании пропорциональной модели Кокса уровень остеопротегерина оказывал независимое влияние в отношении неблагоприятных клинических исходов у больных с ИБС (ОШ = 2,49; 95 % ДИ — 1,26—4,89). В целом мониторирование содержания остеопротегерина в крови больных ИБС выглядит многообещающим с точки зрения скринирования постепенно в группу высокого риска, особенно при отсутствии прогностически неблагоприятных стенотических поражений коронарных артерий. Однако эта гипотеза нуждается в уточнении [9].

По данным 6-летнего проспективного когортного исследования EPIC (EuropeanProspectiveInvestigationofCancer)-Norfolk, в котором приняли участие 25 663 асимптомных пациентов, содержание циркулирующего остеопротегерина является очень надежным и чувствительным предиктором возникновения впервые выявленной ИБС. При этом не отмечено взаимосвязи между величиной сердечно-сосудистого риска и растворимой формой RANKL в этой популяции пациентов, хотя в других исследованиях подобная ассоциация была обнаружена и не зависела от других традиционных факторов риска, таких как С-реактивный протеин, курение, мужской пол, толщина интима-медиального сегмента сонной артерии, гиперлипидемии [26]. По нашим данным, у пациентов, перенесших инфаркт миокарда с зубцом Q, увеличение концентрации остеопротегерина в плазме
крови выше 5302 пг/мл позитивноассоциируется с возрастанием риска смерти в течение года в этой когорте пациентов [1]. Вероятно, прогностическая ценность остеопротегерина у больных с документированной ИБС может быть достаточно велика, однако в какой мере она ассоциирована с влиянием других факторов кардиоваскулярного риска при наличии или отсутствии сердечно-сосудистых событий в анамнезе, не вполне ясно [9].

Остеопротегерин и кальцифицирующая ангиопатия у пациентов с хроническим заболеванием почек

Элевация циркулирующего уровня остеопротегерина у больных с хроническим заболеванием почек (ХБП) — достаточно известный факт [17, 33]. Этот феномен часто объясняют редукцией величины скорости клубочковой фильтрации, так как остеопротегерин имеет почечный клиренс. Действительно, содержание остеопротегерина в плазме крови негативно линейно коррелирует со скоростью клубочковой фильтрации, скорректированной по возрасту и гендерной принадлежности [25]. Кроме того, при заместительной терапии или трансплантации почки циркулирующий уровень остеопротегерина достаточно быстро снижается. Ряд исследователей полагают, что остеопротегерин у этой когорты пациентов необходимо рассматривать как компонент, характеризующий напряженность протективного механизма, необходимый для реализации антиатерогенной защиты, а также снижения риска кальцификации стенки артерий и клапанно-хордального аппарата сердца [21]. Так, при мультивариантном анализе оказалось, что содержание остеопротегерина в плазме крови позитивно коррелирует с тяжестью кальцификации аортального клапана. Группа авторов [40], используя ROC-анализ (receiveroperatorcharacteristiccurveanalysis), установила, что увеличение концентрации остеопротегерина выше точки разделения 757,7 пг/мл обладает наилучшей предсказующей ценностью (чувствительность 91,7 %; специфичность 59 %) для кальцификации аортального клапана. Это имеет большое клиническое значение, поскольку
депонирование кальция в артериях различной локализации и клапанно-хордального аппарата сердца у пациентов с ХБП позитивно ассоциируется с вероятностью смертельного исхода вследствие сердечно-сосудистых причин [33, 35, 43]. Однако у лиц, получающих заместительную терапию гемодиализом, подобной корреляции не обнаружено [17, 46]. В связи с этим достаточно сложно прийти к аргументированному мнению о возможности использования концентрации остеопротегерина как маркера сердечно-сосудистого риска у больных с ХБП, находящихся на заместительной терапии. Можно предположить, что недостаточное снижение концентрации остеопротегерина у этих больных является отражением неадекватности процедуры диализа[9].

В целом можно заключить, что остеопротегерин, вероятно, является перспективным индикатором сердечно-сосудистого риска у представителей общей популяции, диагностическая и прогностическая ценность которого для селективных когорт больных требует дальнейшего изучения и уточнения [9, 152].

Прогностическое значение элевации циркулирующего уровня остеопротегерина у пациентов с документированной сердечной недостаточностью

Провоспалительную активацию рассматривают в качестве ключевого индикатора краткосрочного и долговременного прогноза у пациентов с сердечной недостаточностью (СН) независимо от ее этиологической принадлежности [31]. В то же время повышение экспрессии генов, ответственных за продукцию провоспалительных цитокинов суперсемейства ФНО моноцитами периферической крови, обнаруживают в основном у больных со сниженной фракцией выброса левого желудочка и СН III—IV функционального класса и рассматривают как независимый предиктор гипертрофии левого желудочка и неблагоприятного клинического исхода. Предполагают, что взаимодействие остеопротегерина с системой
RANKL/RANK имеет большое значение для активации ММП (особенно матриксных металлопротеиназ-2 и матриксных металлопротеиназ-9), играющих важную роль в репозиции внеклеточного матрикса в контексте прогрессирования сердечно-сосудистого ремоделирования, определяющего вероятность выживания [30]. Действительно, циркулирующий уровень остеопротегерина в когорте больных с \(\text{СН} \) обычно достоверно выше, чем у здоровых, позитивно коррелирует с содержанием в плазме крови NT-Pro-BNP и негативно — с фракцией выброса левого желудочка, сердечным индексом [44]. Кроме того, существуют доказательства прогностического потенциала элевации остеопротегерина у больных \(\text{СН} \) [49]. Так, у когорты выживших пациентов содержание остеопротегерина было достоверно ниже, чем у умерших (соответственно 2,8 и 4,2 нг/мл; \(p < 0,001 \)). У когорты пациентов с ОКС концентрация остеопротегерина позитивно ассоциировалась с риском смертельного исхода. Причем эта взаимосвязь сохранялась после коррекции по величине фракции выброса левого желудочка [49]. Таким образом, использование остеопротегерина с прогностической целью у пациентов с \(\text{СН} \) различной этиологии достаточно целесообразно, но требует уточнения [9].

Кальцитонин

Кальцитонин первично синтезируется в парафолликулярных С-клетках щитовидной железы как препрогормон с молекулярной массой 17 кДа [1]. Основная функция кальцитонина - уменьшение концентрации кальция в плазме [1, 2]. Показано, что относительно небольшой прирост концентрации внеклеточного кальция стимулирует секрецию кальцитонина. Секреция кальцитонина также регулируется гастроинтестинальными пептидами, эстрогенами и витамином Д. Стимуляция гастропептидами секреции кальцитонина, следующая за приемом пищи, может играть роль в поддержании постпрандиального гомеостаза кальция. Очевидно, кальцитонин действует, ингибируя активность остеокластов, в результате
чего уменьшается мобилизация кальция из кости. Этот эффект более нагляден в условиях, связанных с высоким уровнем ремоделирования кости, например, болезни Педжета, при введением экзогенного кальцитонина. Кроме того, показано, что экзогенный кальцитонин уменьшает боли, связанные с болезнью Педжета и злокачественными опухолями, видимо, благодаря прямому действию на центральную нервную систему. Некоторые другие ткани могут реагировать на введение кальцитонина. Однако, физиологическая роль эндогенного кальцитонина в гомеостазе кальция известна не до конца [1, 2]. Диагностическая ценность кальцитонина в диагностике МКН при ХСН не ясна.

Лечение минеральных и костных нарушений при ХБП

Коррекция уровней фосфатов и кальция сыворотки при МКН-ХБП

В соответствии с рекомендациями по МКН-ХБП, у пациентов с ХБП следует поддерживать уровень фосфатов и кальция крови в нормальном диапазоне [21].

Поддержание уровня фосфатов сыворотки крови в нормальном диапазоне у пациентов с ХБП 3–5 можно обеспечить путем ограничения поступления фосфатов с пищей, уменьшения всасывания фосфатов из кишечника и увеличения выведения фосфатов на диализе [21].

Попытки ограничения поступления фосфатов пищей в значительной мере лимитированы, по скольку фосфаты неразрывно связаны с белком, уменьшение потребления которого оптимально до 1 г/кг/сут при 1-2 стадиях и 0,6–0,8 г/кг/сут при 3-4 стадиях ХБП [67].

Выбор фосфат-связывающего препарата (ФСП), препятствующего всасыванию фосфатов в кишечнике, путем связывания их в нерастворимые соединения, на практике часто определяется его стоимостью и концентрацией кальция в крови [21]. Применение ФСП при ХСН мало изучено.

Коррекция уровня ПТГ
Оптимальная концентрация ПТГ на преддиализных стадиях ХБП неизвестна, поэтому у этой категории пациентов при уровне ПТГ, превышающем верхнюю границу нормы, необходимо направить все усилия на коррекцию гиперфосфатемии и гипокальциемии и дефицита витамина D[21].

Ориентировочными для уровня паратгормона на преддиализных стадиях ХБП считаются следующие целевые значения:

- ХБП 3 35–70 пг/мл (3,85–7,7 пмоль/л),
- ХБП 4 70–110 пг/мл (7,7–12,1 пмоль/л),
- ХБП 5 70–130 пг/мл (7,7–14,4 пмоль/л)[21].

Если после доступной коррекции модифицируемых факторов у преддиализных пациентов ПТГ остается стабильно высоким или повышается, целесообразно начинать терапию препаратами витамина D3 (альфакальцидол, кальцитриол) или активаторами рецепторов витамина D (парикальцитол)[21]. Убедительно продемонстрирована способность кальцитриола и его аналогов снижать уровень ПТГ и ЩФ, но такая терапия может вызвать повышение уровня кальция и фосфатов. При гиперкальциемии и гиперфосфатемии следует уменьшить дозы или отменить эти препараты.

В отношении использования кальцимиметика цинакальцета на преддиализной ХБП выполнено одно РКИ, продемонстрировавшее снижение ПТГ на 43% в сравнении с контрольной группой (критерием включения был уровень ПТГ более 100 пг/мл в 3 стадии и более 160 пг/мл в 4 стадии ХБП). Подавление секреции ПТГ было достигнуто ценой учащения гипокальциемии (<2,1 ммоль/л) у 62% пациентов, увеличения уровня фосфатов. При этом большая доля пациентов в группе цинакальцета лечились одновременно витамином D и получали добавки кальция. В аспекте результатов этого исследования длительное персистирование гиперфосфатемии в сочетании с применением добавок кальция вызывает определенную озабоченность и не позволяет без дополнительных исследований рекомендовать применение цинакальцета на преддиализных стадиях хронической болезни почек[21]. При гипокальциемии в зависимости от ее выраженности, сопут-
ствующей терапии и клинической симптоматики целесообразно уменьшить дозу или отменить кальцимиметик. При снижении ПТГ ниже двукратной верхней границы нормы (150 пг/мл) следует уменьшить дозу кальцитриола, активатора рецепторов витамина D и/или кальцимиметика или отменить эти препараты[21]. У пациентов с сердечной недостаточностью при назначении цинакальцета регистрировались отдельные идиосинкразические случаи снижения АД и/или ухудшения течения сердечной недостаточности.

Не проведено специальных РКИ, оценивающих терапию кальцитриолом или активаторами рецепторов витамина D с точки зрения оценки летальности и таких «конечных точек» терапии, как частота переломов и сердечно-сосудистых осложнений, частота госпитализаций, качество жизни. Сделать же достоверные выводы на основании существующих обсервационных исследований невозможно[21]. Завершенных исследований, обладающих достаточно высоким качеством, где были бы продемонстрированы позитивное или негативное влияние кальцимиметиков на летальность, сердечно-сосудистые события, госпитализации, переломы или качество жизни в настоящее время нет[21]. Также не сделано заключение о значении кальцитриола или активаторов рецепторов витамина D и кальцимиметика в отношении возможного влияния на кальцификацию сосудов[21].

На основании исследований костных биоптатов можно сделать заключение, что кальцитриол и активаторы рецепторов витамина D улучшают течение фиброзного остеита и минерализацию кости, а также снижают скорость костного обмена. Но последнее может привести к развитию адинамической болезни кости[21]. При низком уровне ПТГ и в условиях отсутствия гиперкальциемии не рекомендуется полная отмена препаратов активной формы витамина D, поскольку препараты данной группы способствуют формированию костной ткани при адинамической болезни[21]. Данных о влиянии кальцимиметика на параметры костной гистоморфометрии пока данных недостаточно.
У пациентов с ХБП 3–5D и тяжелым гиперпаратиреозом при неэффективности его фармакологической коррекции требуется вмешательство напаращитовидных железах [21]. Возможность, эффективность, безопасность применения подходов, рекомендованных для коррекции МКН при ХБП, и паратиреоидэктомии у больных с ХСН неизучена.

Остеопороз как системное нарушение костного метаболизма

В настоящее время большое внимание исследователей уделяется остеопорозу – системному нарушению костного метаболизма, характеризующемуся потерей минерального и органического компонента кости, снижением ее плотности и увеличением хрупкости, что приводит к возникновению переломов [26].

Социальная значимость остеопороза определяется его последствиями – переломами позвонков и костей периферического скелета, обусловливающими высокий уровень нетрудоспособности, включая инвалидность, и смертности и, соответственно, большие материальные затраты в области здравоохранения. При одномоментном эпидемиологическом исследовании среди городского населения России, оказалось, что 24% женщин и 13% мужчин в возрасте 50 лет и старше ранее уже имели, по крайней мере, один клинически выраженный перелом. Остеопоротические переломы позвонков имели около 10% жителей России 50 лет и старше, причем частота их одинакова у мужчин и женщин. Исследование, проведенное в 2008-2009 гг. в четырех городах России, показало, что частота переломов проксимального отдела бедра составляла 239 случаев на 100 000 населения. При этом у мужчин в возрасте 50-64 года она была в 2 раза выше, чем у женщин, а в возрасте 75 лет и старше эта тенденция была диаметрально противоположной. Летальность в течение первого года после этого перелома составляет от 12 до 40%, причем данный показатель выше у мужчин. Особенно высока летальность в течение первых 6 месяцев после перелома, которая на 5-20% выше по сравнению с лицами того же возраста без переломов, а в некоторых городах России летальность в 8 раз выше общегород-
сих показателей смертности у лиц того же возраста. У больных, выживших после перелома бедра, снижается качество жизни, каждый третий утрачивает способность к самообслуживанию и нуждается в длительном постоянном уходе [36].

Механизм развития остеопороза при ХСН

Остеопороз у больных с ХСН изучен недостаточно. Снижение МПК при этом заболевании может быть обусловлено множественными факторами. К ним относятся нейрогуморальная активация, воспаление, оксидативный стресс, дисфункция почек, вторичный гиперпаратиреоз, недостаточность витамина D, снижение переносимости физических нагрузок и низкая физическая активность, несоблюдение диетических предписаний по профилактике остеопороза, мальnutrition, мальабсорбция, снижение аппетита, гипогонадизм, преобладание процессов кatabolизма, прием ряда лекарственных препаратов [103, 580, 990]. Развитию недостаточности витамина D при ХСН способствуют недостаточное пребывание на солнце вследствие низкой физической активности, застой в печени (снижение синтеза витамина D в печени) и кишечнике (нарушение всасывания витамина D), дисфункция почек и лечение петлевыми диуретиками и вазодилататорами, которые нарушают синтез 1,25-(ОН)2-витамина D[103]. По данным проведенных исследований и метаанализов, прием β-адреноблокаторов, тиазидных диуретиков и ингибиторов АПФ ассоциирован с уменьшением частоты развития переломов, прием петлевых диуретиков – с ее увеличением. Антагонисты рецепторов ангиотензина и калийсберегающие диуретики на частоту развития переломов не влияли [917]. Вклад каждого из перечисленных и других факторов в развитие остеопороза у больных с ХСН нуждается в дальнейшем изучении.

Теоретически можно выделить общие механизмы в патофизиологии ХСН и остеопороза [207]. По данным исследований на животных, ключевым компонентом патогенеза как ХСН, так и снижения костной массы является альдостеронизм. В экспериментах на животных показано, что по-
вышенный уровень альдостерона приводит к увеличению экскреции кальция, развитию вторичного гиперпаратиреоза, что может способствовать снижению костной массы [917]. Другие возможные общие патогенетические механизмы – хроническое воспаление, оксидативный стресс, изменение уровня половых гормонов, белков, связанных с жировым обменом, гормонов, участвующих в регуляции кальцификации [149, 825].

Наличие общих звеньев патогенеза остеопороза и сердечно-сосудистой патологии можно продемонстрировать на примере атеросклероза. Так, в атеросклеротических бляшках выявлены белки, свойственные костной ткани, кальцификация сосудистой стенки во многом напоминает процесс костеобразования [694]. Показано, что у больных с остеопорозом кальцификация артерий развивается чаще, чем в общей популяции. Бифосфонаты в ряде работ вместе с замедлением прогрессирования остеопороза предотвращали развитие атеросклероза и, наоборот, статины снижали риск развития остеопоретических переломов [825].

Ряд генетических исследований выявил эндогенные локальные и системные ингибиторы минерализации и кальцификации сосудов у человека и животных. Матричный протеин Gla (MIPG) – γ-карбоксилированный кальций-связывающий протеин, в норме синтезируется в хряще и сосудистой стенке. На основании исследований больных с синдромом Keutel и мышей с отсутствием MIPG, у которых дефицит MIPG приводит к спонтанной кальцификации хряща и артерий, было предположено, что этот протеин играет роль ингибитора сосудистой кальцификации. Хотя точный механизм действия неизвестен, ингибирующее действие MIPG на кальцификацию сосудов, как было показано, требует витамин К зависимого γ-карбоксилирования. Использование варфарина, антагониста витамина K, было взаимосвязано с развитием уремической кальцифицирующей артериопатии, которая приводит к тяжелым неблагоприятным последствиям у пациентов, получающих лечение гемодиализом. Более того, варфарин у грызунов повсеместно используется для индуцирования кальцификации.
сосудов [753]. Роль МПГ в развитии кальцификации сосудов и остеопороза у больных с ХСН, предстоит уточнить.

Другим ингибитором кальцификации является фетуин А – сывороточный гликопротеин, который синтезируется и секретируется печенью. У мышей с выключенным геном, кодирующим фетуин А, спонтанно развивается кальцификация сосудов и мягких тканей. Механизм подавления сосудистой кальцификации с помощью фетуина А может быть связан с его способностью подавлять преципитацию фосфата кальция. В группе больных, нуждающихся в диализе, фетуин А обратно коррелировал с повышением риска смерти от сердечно-сосудистых причин. Однако недавние исследования больных с преддиализной ХПН и больных, получающих лечение гемодиализом, не показали убедительной взаимосвязи между снижением уровня фетуина А и степенью сосудистой кальцификации [753]. Кальцификация сосудов, структур сердца и других мягких тканей при ХСН мало изучена.

Выявлен целый ряд веществ, которые могут индуцировать сосудистую кальцификацию. К ним относится гиперфосфатемия, гиперкальциемия, липиды, провоспалительные цитокины. Invitro инициировать кальцификацию может апоптоз гладкомышечных клеток [753].

В исследованиях животных сосудистая кальцификация была взаимосвязана с костным ремоделированием. У мышей дефицит главного ингибитора образования остеокластов остеопротегерина приводил к остеопорозу и кальцификации сосудов. Более того, ингибиторы резорбции остеокластов, такие как остеопротегерин и бифосфонаты, блокировали кальцификацию артерий у крыс [753].

Около 10 лет назад была выявлена взаимосвязь между костной и сосудистой патологией. Сначала была выявлена взаимосвязь остеопороза и кальцификации аорты. Некоторые традиционные факторы риска сердечно-сосудистой патологии, такие как сахарный диабет, курение, артериальная гипертензия, по-видимому, являются предикторами снижения МПК. В
Роттердамском исследовании было показано, что гипергомоцистеинемия, которая является сердечнососудистым фактором риска, независимо взаимосвязана с остеопорозом. Invitro было показано, что окисленные липопротеины и провоспалительные цитокины, такие как ИЛ-6 и ФНО-α обладают проатерогенным влиянием, ингибируют дифференциацию остеобластов и способствуют резорбции кости. В то же время статины являлись пусковым фактором остеосинтеза в исследованиях на животных и в обсервационных исследованиях было показано, что у женщин в постменопаузе на фоне лечения статинами увеличивалась МПК и снижался риск развития переломов [753]. Однако доказательств взаимосвязи между сосудистой и костной патологией пока еще недостаточно.

Недавно при долгосрочном наблюдении близнецов в Швеции было выявлено, что вероятность переломов после развития ХСН увеличивается в 4,4 раза. У братьев/сестер-близнецов этих больных, у которых не было ХСН, риск развития переломов был также выше в 3,74 раза. Это свидетельствует о наличии генетических факторов, отвечающих за взаимосвязь между развитием ХСН и остеопороза. Возможно, особое значение имеют матричные протеины. Так, у мышей с мутацией, выключающей работу генов веществ, участвующих в ремоделировании кости, таких как остеопротегерин, α-Klotho и матричный протеин Gla, развивалась тяжелая остеопения и кальцификация сосудистой стенки [149, 825]. Значение генетического фактора в развитии остеопороза у больных с ХСН требует дальнейшего изучения [351].

Лечение остеопороза у больных с ХСН.

Первичная цель лечения остеопороза – снижение риска развития переломов. К общим рекомендациям для поддержания мышечно-скелетного здоровья у женщин в постменопаузе и пожилых мужчин относятся:

1. Физические нагрузки (ходьба, бег трусцой, аэробика; прыжки и бег противопоказаны): в течение 30 минут 3 раза в неделю.

2. Адекватное потребление кальция: 1200-1500 мг/сут.
3. Адекватное потребление витамина D: >800ME/сут.
4. Отказ от курения.
5. Ограничение потребления алкоголя: <3 алкогольных единиц/сут[25, 36, 754].

Три из пяти перечисленных пункта для предотвращения развития остеопороза также включены в рекомендации по ведению больных с ХСН: физические нагрузки, отказ от курения и ограничение потребления алкоголя [917].

Витамин D и кальций играют существенную роль в регуляции кальциевого гомеостаза и поддержании здоровья кости. Наиболее эффективной является комбинация кальция и витамина D. Кальций в комбинации с витамином D снижает риск переломов на 12%. Снижение риска максимально среди больных, получающих не менее 1200 мг кальция и 800 МЕ витамина D в сутки[754].

Необходимость фармакотерапии остеопороза основывается на оценке индивидуальной вероятности перелома в течение последующих 10 лет. Для этого ВОЗ на основе популяционных исследований разработана модель FRAX, включающая клинические факторы риска (возраст; пол; рост; вес; перелом в анамнезе, произошедший самопроизвольно или в результате такой травмы, от которой у здорового человека перелома бы не возникло; переломы бедра у родителей; курение; прием глюкокортикоидов; наличие ревматоидного артрита; наличие заболевания с доказанной ассоциацией с остеопорозом, например сахарного диабета 1 типа, несовершенного остеогенеза у взрослого, длительно нелеченного гипертиреоза, синдрома Ку-шинга, гипогонадизма или ранней менопаузы (<45 лет), хронического недоедания или мальабсорбции и хронического заболевания печени) и МПК в шейке бедра. Риск переломов может расцениваться как низкий (<10% абсолютный риск), умеренный (10-20%) и высокий (>20%). У больных, у которых был самопроизвольный перелом или перелом в результате

11 Алкогольная единица равна 285 мл пива, 120 мл вина или 30 мл спирта.
такой травмы, от которой у здорового человека перелома бы не возникло, риск последующих переломов является высоким.

Показания для фармакотерапии остеопороза мужчинам старше 50 лет и женщинам в постменопаузе: 1) наличие остеопороза по результатам ДРА, 2) наличие спонтанного перелома или перелома при минимальной травме, 3) высокий риск переломов (>20% для переломов любой локализации и >3% для перелома шейки бедра) [36]. Фармакотерапия также может быть эффективна у больных с умеренным риском переломов при оценке с помощью модели FRAX [754].

Препаратами первой линии для лечения остеопороза являются лекарственные средства, эффективность которых в отношении снижения риска переломов доказана в длительных многоцентровых клинических испытаниях [35]. В лечении остеопороза используются азотсодержащие бифосфонаты (алендронат, ризендронат, ибандронат, золендроновая кислота), деносумаб, терипаратид и стронция ранелат (Уровень доказанности А) [36].

Бифосфонаты являются экзотами пирофосфатов с высокой аффинностью к минеральной поверхности кости. Ингибитируя активность остеокластов, они уменьшают костное ремоделирование, увеличивают МПК и уменьшают риск переломов среди женщин и мужчин, хотя в последней группе это меньше подтверждено документально. Самые частые побочные эффекты при пероральном приеме бифосфонатов связаны с желудочно-кишечными расстройствами, которые встречаются у 10% пациентов. Часто этого не наблюдается при соблюдении рекомендованного режима дозирования (утром натощак за 40-60 минут до еды, запить полным стаканом воды, после приема 40-60 минут не принимать горизонтальное положение). Редко развиваются язвы пищевода, боль в костях. У больных с онкологической патологией, получавших высокие дозы бифосфонатов внутривенно, был зарегистрирован остеонекроз челюсти. Частота его развития 1:100000 персоно-лет среди больных, получающих бифосфонаты перорально. После
инфузии золедроната у 10% пациентов может появиться гриппоподобный синдром, который обычно проходит самостоятельно. Кроме того, на фоне приема бифосфонатов в ряде исследований выше частота развития фибрилляции предсердий, чем при приеме плацебо. Хотя другие исследования этого не подтвердили [754]. Бисфосфонаты назначаются в течение 3-5 лет, однако женщины с высоким риском переломов позвонков могут продолжить лечение свыше 5 лет с учетом противопоказаний [36].

Ралоксифен — селективный модулятор эстрогеновых рецепторов, действует как агонист на ткани организма, не связанные с репродукцией (например, на кость), и как антагонист - на ткани, связанные с репродукцией (например, молочные железы). Уменьшает процесс резорбции костной ткани и нормализует баланс кальция в организме, прежде всего, за счет уменьшения потерь кальция с мочой. Было показано, что ралоксифен снижает риск развития рака молочной железы, но увеличивает риск тромбоэмболических осложнений [754]. В современные рекомендации по лечению остеопороза не включен [36].

Кальцитонин — гормон, продуцируемый С-клетками щитовидной железы, ингибитирует остеокласты. Через специфические рецепторы (в костях, почках) кальцитонин воздействует на цАМФ, в результате чего тормозится резорбция костей (под действием остеокластов и остеоцитов), стимулируется минерализация костей (под действием остеобластов), что, в частности, проявляется понижением уровня кальция и фосфора сыворотки и экскреции с мочой гидроксипролина. Кальцитонин оказывает прямое влияние на почки, повышая экскрецию кальция, фосфора и натрия за счет подавления их канальцевой реабсорбции. Эти эффекты также частично опосредуются цАМФ. Однако у некоторых пациентов возможно уменьшение (а не повышение) экскреции кальция с мочой, что связано с преобладанием вызванного кальцитонином эффекта от подавления костной резорбции над эффектом от прямого влияния кальцитонина на почки. Кальцитонин применяется в виде назального спрея (Миакальцик), хорошо пе-
реносится [754]. В современные рекомендации по лечению остеопороза не включен [36].

Деносумаб – человеческие моноклональные антитела (IgG2) к лиганду рецептора активатора ядерного фактора kB (RANKL). Он увеличивает МПК позвонков, проксимальных отделов бедренной кости и дистального отдела предплечья, уменьшает риск переломов тел позвонков и периферических костей у женщин с постменопаузальным остеопорозом. Продолжительность лечения до 6 лет [36, 985].

Терипаратид – синтетический рекомбинантный гормон, состоящий из 34 аминокислот человеческого паратиреоидного гормона, активирует процессы остеосинтеза. Терипаратид увеличивает МПК позвончика и проксимальных отделов бедренной кости, уменьшает риск переломов тел позвонков и периферических костей у женщин с постменопаузальным остеопорозом [36]. Показан для лечения тяжелых форм ОП. Продолжительность лечения 18 месяцев. Применение терипаратида в рамках зарегистрированных показаний рекомендовано: 1) в качестве терапии первой линии у пациентов с тяжелым остеопорозом (один и более переломов тел позвонков или перелом проксимального отдела бедра, многочисленные повторные переломы костей скелета), 2) у пациентов с неэффективностью предшествующей антиостеопоротической терапии (новые переломы, возникшие на фоне лечения и/или продолжающееся снижение МПК), 3) у пациентов с непереносимостью других препаратов для лечения остеопороза или при наличии противопоказаний для их назначения. Использование бисфосфонатов (алендроната) после лечения терипаратидом (последовательная схема терапии) приводит к достоверному дальнейшему увеличению МПК у женщин в постменопаузе [36]. Побочными эффектами являются боль в месте инъекции, тошнота, головная боль (у 3% пациентов), судороги в нижних конечностях (у 2-8%) и умеренная гиперкальциемия (у 10%). Стоимость в несколько раз превышает стоимость других препаратов для лечения остеопороза [754]. У пациентов со стабильным течением ХСН
после применения двух доз терипаратида по 20 мкг клинических изменений АД, ЧСС и других показателей безопасности выявлено не было. Коррекции дозы при применении у пациентов с ХСН I-III ФК NYHA не требуется (VIDAL).

Стронция ранелат увеличивает МПК позвонков и проксимальных отделов бедренной кости и уменьшает риск переломов тел позвонков и периферических переломов у женщин с постменопаузальным остеопорозом. Показан для лечения тяжелого ОП. Продолжительность лечения от 3 до 8 лет. Применение стронция ранелата в рамках зарегистрированных показаний рекомендовано: 1) при тяжелом остеопорозе противопоказаниях или непереносимости других препаратов, 2) у пациентов с отсутствием ишемической болезни сердца, неконтролируемой артериальной гипертензии, заболеваний периферических артерий и цереброваскулярных заболеваний[36].

Препаратами первого выбора лечения остеопороза у мужчин являются бисфосфонаты (алендронат, золедроновая кислота) и терипаратид. Препарат второго выбора у мужчин с повышенным риском переломов - стронция ранелат[36]. Золедроновая кислота, назначенная после перелома проксимального отдела бедра у мужчин, снижает частоту всех новых клинических переломов и рисклетальных исходов независимо от их причины. Основные принципы лечения и ведения больных с ОП у мужчин не отличается от таковых у женщин с ОП[36].

Лечение ОП должно проводиться в рекомендованном режиме не менее 3-5 лет. Лечение одновременно двумя препаратами патогенетического действия и монотерапия препаратами кальция и витамина D не проводится. Лечение любым препаратом патогенетического действия должно сопровождаться назначением адекватных доз кальция (1000-1500 мг в сутки с учетом продуктов питания) (A) и витамина D (800-2000 ME в сутки) [36].

В настоящее время разрабатываются новые препараты для лечения остеопороза, в т.ч. стимулирующие образование костной ткани (gormon
роста, агонисты рецепторов 1 типа ПТГ или его аналоги, простагландины семейства Е и др.) и подавляющие её резорбцию. Большое внимание привлекает лечение, направленное на угнетение α-ФНО, которое может оказать положительное влияние на костную и сосудистую ткани. Специфические ингибиторы протеазы остеокластов катепсин K (Odanacatib) и анти-тел против белков sclerostin и dickkopf-1, последнее поколение аналогов витамина D начинают находить своё место в клинической практике [33, 570, 752].

Оценка эффективности проводимого патогенетического лечения ОП проводится с помощью аксiallyальной денситометрии через 1-3 года от начала терапии, но не чаще чем раз в год. Лечение считается эффективным, если МПК увеличилась или осталась на прежнем уровне. Измерение уровней маркеров костного обмена возможно уже через 3 месяца лечения с целью прогноза эффективности лечения Изменение уровня маркеров на 30% и больше (снижение при антirezорбтивной терапии и увеличение при лечении терипаратидом) прогнозирует хорошую эффективность лечения [36].

С целью профилактики остеопороза рекомендуются адекватный при-ем кальция с пищей, и достаточное поступление витамина D. Людям с риском остеопороза или доказанным дефицитом витамина D должны назначаться добавки витамина D 800 МЕ в сутки. При недостаточном по-треблении кальция с пищей необходимы также добавки кальция. Продолжительность приема кальция и витамина D зависит от того, сохраняется ли риск либо дефицит. Активный образ жизни, физические упражнения и отказ от вредных привычек. Женщинам моложе 60 лет в постменопаузе с цел-ью профилактики остеопороза дополнительно к вышеперечисленному может назначаться заместительная гормональная терапия женскими поло-выми гормонами (ЗГТ) независимо от наличия климактерических симпто-мов при условии низкого риска сердечно-сосудистых осложнений. Вопрос о назначении и длительности ЗГТ решается гинекологом индивидуально для каждой пациентки с учётом противопоказаний и возможного риска
осложнений. С целью профилактики постменопаузального остеопороза у пациенток с остеопенией может применяться золедроновая кислота [36].

Влияние препаратов для лечения остеопороза на течение и прогноз у больных с ХСН исследовано недостаточно. Frost R.J. и соавт. показали, что изолированное назначение препаратов кальция (1000 мг/сут) не предотвращает снижения МПК у больных с ХСН [351]. Препараты кальция также не были эффективны у больных после пересадки сердца, по-видимому вследствие одновременного применения высоких доз глюкокортикоидов [351]. Schleithoff S. и соавт. назначали больным с ХСН 50 мкг (2000 ME) витамина D3/сут совместно с 500 мг Ca или плацебо совместно с 500 мг Ca/сут и показали, что добавление витамина D3 к препаратам кальция предотвращает увеличение уровня провоспалительных цитокинов (TNF-α) и увеличивает уровень противовоспалительных цитокинов (ИЛ-10), что может оказать благоприятное влияние на течение ХСН [806]. В работе vanDiepen S. и соавт. выявлено повышение риска развития переломов у больных с ХСН при лечении бифосфонатами, что не согласуется с результатами исследований у больных без ХСН. Возможно, что в этом крупном популяционном исследовании бифосфонаты принимали пациенты с выраженным остеопорозом и без приема этих препаратов риск развития переломов оказался бы гораздо выше [917].

Необходимо дальнейшее изучение эффективности препаратов для лечения остеопороза у больных с ХСН. Для разработки эффективных терапевтических стратегий требуется детальное понимание сложных взаимосвязей между кальций-фосфорным обменом, FGF23, паратгормоном, витамином D, маркерами костного метаболизма и ХСН.

Печень как орган-мишень при ХСН: кардиогепатический синдром

В современной литературе мало данных о влиянии СН на функцию печени [797]. Тем не менее проблема кардиогепатических взаимоотношений заслуживает не меньшего внимания, чем кардиоренальный синдром
Клинически поражение печени может проявляться вздутием живота, дискомфортом в правом верхнем квадранте живота, тошнота, раннее насыщение или анорексия, апатией, слабостью, иногда когнитивной дисфункцией, треском, комой, желтухой [735]. Лабораторные данные, свидетельствующие о поражении печени, нередко встречаются при ХСН. Они связаны с нарушением кровоснабжения или повышением давления в правых отделах сердца, или имеют вторичный лекарственно-опосредованный характер. Попытки описать признаки хронического поражения печени при СН ведутся с начала 20-го века. Тем не менее ни патогенетические механизмы поражения печени, ни его клиническое значение при ХСН четко не показаны [797].

По аналогии с кардиоренальным синдромом, Poelzl выделяет 5 типов кардиогепатического синдрома (КГС). Тип 1 – острый кардиогепатический синдром - остroe кардиогенное повреждение печени (ОКПП) при остром коронарном синдроме, кардиогенном шоке, ОДСН, часто называют гипоксическим гепатитом, или ишемическим гепатитом, или шоковой печенью. Тип 2 – хронический кардиогепатический синдром - развитие хронической болезни печени при ХСН. Тип 3 – острый гепатокардиальный синдром - ОСН, аритмии, ишемия на фоне острой печеночной недостаточности или развитии острой недостаточности у больных с хронической печеночной недостаточностью [571, 978]. Тип 4 – хронический гепатокардиальный синдром - нарушение структуры и функции при хронических гепатитах, циррозах печени. Тип 5 – вторичный кардиогепатический синдром, развивающийся при системных заболеваниях, таких как сепсис, амилоидоз, гемохроматоз, болезнь Вильсона-Коновалова, ВИЧ-инфекция, системная красная волчанка, алкоголическая болезнь, которые одновременно поражают и сердце, и печень, приводя к развитию их дисфункции. Т.е., поражение печени у больных с СН представляет собой кардиогенетический синдром 1 или 2 типа [735]. В ряде случаев кардиогепатический синдром может сочетаться с кардиоренальным синдромом [738].
Кардиогепатический синдром 1 типа: острое кардиогенное повреждение печени

Проявления и патофизиология

Острое кардиогенное повреждение печени (ОКПП) развивается при острой кардиальной патологии в случае, если сердечный выброс не обеспечивает метаболические потребности печени [418, 915]. В исследовании EFICA дисфункция печени была выявлена у 81% больных с кардиогенным шоком и у 51% - без шока [982].

Гипоксия печени приводит к развитию цитолиза. После восстановления гемодинамики симптомы могут появляться после латентного периода в 2-24 часа. Они могут включать слабость, апатию, редко – спутанность сознания, тремор, печеночную кому и желтуху [667]. За счет нарушения продукции факторов свертывания может развиваться геморрагический диатез [667]. Эти отклонения достигают пика на 1-3 день после появления симптомов и у пациентов, которые не погибают, возвращаются к норме через 5-10 дней после начала [427, 668].

Гистопатология
Гистологически при ОКПП выявляется некроз вокруг центральной вены, в зоне снижения оксигенации (зона 3 ацинуса). Выраженность нарушения архитектоники определяется продолжительностью ишемии [371]. Для постановки диагноза обычно достаточно клинических и лабораторных данных. Для уточнения этиологии процесса может быть полезна биопсия печени[136, 492].

Биохимический профиль

Типичные изменения в биохимическом анализе крови включают значительное и быстрое повышение аминотрансфераз и лактатдегидрогеназы (ЛДГ) в 10-20 раз, обычно на 1-3 день после нарушения гемодинамики без доказательств другого этиологического процесса. После восстановления гемодинамики их уровень нормализуется в течение 7-10 дней. Раннее и быстрое повышение ЛДГ сыворотки – отличительный признак ОКПП и соотношение АЛТ/ЛДГ<1,5 в начале повреждения печени характерно для кардиогенного повреждения, в отличие от гепатитов другой этиологии[209]. Лабораторные изменения также могут включать резкое повышение аланинаминотрансферазы (АЛТ) и аспартатаминотрансферазы (АСТ, типично в 10 раз выше нормального уровня), повышение билирубина сыворотки и снижение проромбинового индекса (ПТИ)[418]. Фактически в 2-х исследованиях показано снижение протромбиновой активности у 79,5% и 84% больных с ОКПП, что считается нехарактерным для вирусного гепатита [420, 797].

В субанализе исследованияSURVIVEнарушение функциональных печеночных тестов выявлялось у 46% из 1134 пациентов с ОДСН: у 11% отмечалось изолированное повышение щелочной фосфатазы, у 26% - изолированные изменения трансамина, у 9% - изменения ЩФ и трансамина вместе. Повышение ЩФ было связано признаками застоя и повышением давления наполнения правых отделов сердца, а также увеличением смертности в течение полугода. Повышение аминотрансфераз было связано с клиническими проявлениями гипоперфузии и повышением смертно-
сти на 31 и 180-й дни [375, 674]. В исследовании EVEREST повышение активности/концентрации АСТ отмечалось у 21%, АЛТ – у 23%, ГГТП – у 62%, билирубина – у 26% и снижение альбумина – у 17% больных [667].

Кардиогепатический синдром 2 типа: хронический пассивный застой в печени

Интерес к пониманию биохимических и гистологических изменений появился с момента описания «мускатной» печени. Клиническим синдромом этого процесса стала застойная, или кардиальная, гепатопатия, однако распространенность, гистологические изменения, влияние этого состояния на физиологию и прогноз окончательно не изучены [735, 797].

Клиника и патофизиология

В тяжелых случаях, связанных с конечной стадией двухсторонней СН, тяжелой трикуспидальной регургитацией или рестриктивной кардиомиопатией, больные могут напоминать пациентов с хронической патологией печени или циррозом. В остальных случаях может встречаться дискомфорт в правом верхнем квадранте живота, тошнота, раннее насыщение или анорексия. Эту симптоматику достаточно трудно отдифференцировать от первичных гепатобилиарных и гастроинтестинальных заболеваний, таких как холелитиаз, язвенная болезнь, ишемический колит, гемохроматоз, первичный билиарный цирроз, первичный склерозирующий холангит, вирусные, алкогольные и аутоиммунные гепатиты, первичные злокачественные образования гепатобилиарной системы [735]. Эти симптомы могут появляться в отсутствие явного асцита и отеков нижних конечностей (особенно у пожилых) [797].

При застойной гепатопатии происходят 3 процесса: увеличение венозного давления в печени, снижение печеночного кровотока, снижение доставки кислорода. Это приводит к некрозу гепатоцитов, выходу их содержимого в межклеточное пространство, что приводит к растяжению капсулы печени и дискомфорту в правом подреберье [797].

Гистопатология
У больных с застойной гепатопатией выявляются дилатация синусоидов, центролобулярный и перипортальный фиброз, а также атрофия, некроз или и то, и другое, наиболее выраженные в центральной трети печеночных долек [661, 735]. Центролобулярный некроз присутствует почти всегда и при ухудшении СН распространяется к периферии, становится менее выраженным при компенсации. Также описаны различные степени холестаза, иногда с образованием желчных тромбов в канальцах [797].

Биохимический профиль

Kubo и соавт. оценили распространенность патологии печени у 133 больных с хронической систолической СН, развивавшейся у больных с ДКМП. Изменения функциональных печеночных тестов встречались часто, но обычно были мало выражены и преимущественно встречались у лиц с СИ<1л/мин/1,73м2. При снижении СВ и повышении внутрисердечного давления наполнения, отмечалось повышение трансаминаз, ЛДГ, общего билирубина, которые не коррелировали с выраженностью гепатомегалии [538]. В ретроспективном анализе больных с более выраженной СН нарушения функционального состояния печени больше были в виде холестаза и коррелировали с тяжестью ТР [547].

Влияние СН на функциональное состояние печени описано в исследовании CHARM[592]. В дополнение к холестатическому синдрому, описанному ранее при стабильной ХСН, наблюдалось значительное повышение общего билирубина у гиперволемических по сравнению с нормоволемическими больными. Poelzl и соавт. также описали холестатический синдром при стабильной СН и показали положительную взаимосвязь между повышением маркеров холестаза и тяжестью заболевания, оцененной по классификации NYHA[737]. Общий билирубин, ЩФ и ГГПТ независимо коррелировали с проявлениями правожелудочковой СН, в т.ч. набуханием шейных вен, периферическими отеками и ТР. Т.е. повышение давления в правых отделах сердца вносит больший вклад в изменение функционального состояния печени, чем снижение СВ[547].
Прогностическое значение функционального состояния печени

Сначала было показано, что наибольшее прогностическое значение имеет АСТ [735]. В ряде одноцентровых исследований описано повышение частоты смерти, трансплантации сердца и повторных госпитализаций у больных с повышением билирубина в плазме [737]. В субанализе исследования CHARM показано, что билирубин – сильный независимый предиктор ухудшения СН, сердечно-сосудистой и общей смертности [121]. В более позднем исследовании было показано, что у больных со стабильной СН ЩФ, общий билирубин, ГГТП изолированно и совместно были обратно взаимосвязаны с выживаемостью без необходимости проведения трансплантации. В многофакторном анализе независимыми предикторами осталась ГГТП и ЩФ [737]. Уровень ГГТП был взаимосвязан с тяжестью заболевания, смертностью и необходимостью проведения трансплантации сердца [223]. Общий билирубин является маркером неблагоприятного прогноза, особенно у больных с установкой УПРЛЖ. Он являлся независимым предиктором развития правожелудочковой СН у больных с имплантацией УПРЛЖ, в связи с чем этот показатель был включен в шкалу для оценки риска развития правожелудочковой СН после имплантации УПРЛЖ [616] и в модель оценки риска неблагоприятного исхода трансплантации сердца [850].

Распространенность гипоальбуминемии у больных с СН составляет приблизительно 25% и увеличивается с возрастом и развитием хрупкости [139, 445]. Исторически гипоальбуминемию при СН связывали с недостаточным питанием [134, 712], а также гемодилюцией [129] и воспалением [445]. В настоящее время первичным регулятором метаболизма белков в печени считается системное вопаление (а не питательный статус) [291, 352].

Гипоальбуминемия является независимым предиктором смертности как при острой, так и при хронической СН. Продемонстрировано, что альбуминемия связана со значительным увеличением общей смертности в те-
чение 1 и 5 лет, смертью от прогрессирования СН, повышением риска экстренной трансплантации сердца у больных с ХСН III-IVФК [445]. Низкий уровень альбумина сохраняет свою значимость при острой декомпенсации СН даже после коррекции таких факторов, как NT-proBNP[513, 909].

У больных с имплантацией УПРЛЖ гипоральбуминемия была независимым предиктором укорочения продолжительности жизни после трансплантации. В связи с этим альбумин включен в шкалы риска, предсказывающие исходы имплантации УПРЛЖ [223, 560, 768, 797].

У больных со стабильной СН с нормальными уровнями рСКФ и ГГТП частота событий в течение 5 лет составила у 25% и 46% при одновременном снижении рСКФ и повышении ГГТП. У больных с сохранной функцией почек повышение ГГТП увеличивало риск развития событий на 25-35% [738]. Таким образом, одновременное определение функционального состояния почек и печени улучшает оценку прогноза у больных с ХСН [735].

Тактика ведения больных с СН и вторичным повреждением печени

У больных с СН и нарушением функционального состояния печени в первую очередь нужно исключить первичную печенночную патологию или обструкцию желчевыводящих путей[797]. Кардиомиопатии, в т.ч при гемохроматозе и амилоидозе, сопровождаются поражением печени, которые не следует путать со вторичной патологией печени при СН.У всех пациентов с протеинурией и нейропатией, особенно при наличии рестриктивной кардиомиопатии или правожелудочковой СН, следует заподозрить амилоидоз[298].

После исключения первичной печеночной патологии и системной патологии, при которой может быть одновременное поражение сердца и печени, можно рассматривать нарушение функционального состояния печени при повышенном давлении наполнения сердца как кардиогенное повреждение печени. При наличии асцита необходимо проведение диагностического парацентеза. Однако золотым стандартом диагностики патоло-
приг печени является биопсия печени. В острой ситуации биопсия необхо-дима при неясном диагнозе или в тех случаях, когда постановка диагноза необходима для принятия решения (например, кандидатам на трансплан-тацию сердца) [797].

Ведение больных с КГС 1 типа

При кардиогенном шоке, осложненном ОКПП, целью терапии явля-ется восстановление сердечного выброса, перфузии печени и одновременно снижение давление наполнения правых отделов сердца. Необходимо мониторирование функционального состояния печени с соответствующей коррекцией доз препаратов, подвергающихся метаболизму в печени до нормализации функции печени [797].

Основным подходом остается лечение основного заболевания, в т.ч. реваскуляризация коронарных артерий, временная кардиостимуляция, пе-рикардиоцентез и др [735]. Кроме того, физиологические параллели между застойной гепатопатией и первичной патологией печени позволяют при-менять лечения, используемое при циррозе печени (например, антагонисты альдостерона) [797].

Ведение больных с КГС 2 типа

Информация о ведении больных с КГС 2 типа ограничена. Лечение должно быть направлено на лежащую в основе патологию сердца. В рефрактерных случаях требуется парацентез или ультрафильтрация [735].

В малом исследовании (n=56) показано, что у больных с хрониче-ской кардиальной гепатопатией, проявлявшейся повышением уровней ГГТП, ЩФ и билирубина, эти показатели приходили к норме после трансплан-тации сердца [279]. Эти данные позднее были подтверждены другим более крупным ретроспективным анализом, который показал, что в когорте из 617 больных, которым была проведена трансплантация сердца, значительная часть нарушений функционального состояния печени нормали-зовалась после вмешательства [223].
Также у этих пациентов были рассчитаны индексы MELD и mod-MELD (модифицированный MELD, включающий концентрацию натрия) перед трансплантацией и в течение 5 лет после трансплантации. Доля пациентов с повышенным и промежуточным индексом MELD (>20 и 14-20 соответственно) снижалась через 2 месяца после трансплантации и стабилизировались на год после трансплантации. Аналогичные данные были получены для modMELD[223]. Поскольку ранее эти шкалы не использовались для оценки перед трансплантацией сердца, они могут способствовать диагностике выраженной патологии печени. У больных с клиническими, лабораторными и инструментальными доказательствами выраженной патологии печени целесообразно проведение биопсии печени. В случае необратимого повреждения печени рассматривают вопрос о комбинированной трансплантации сердца и печени [204].

Таким образом, необходимо дальнейшее изучение особенностей поражения печени у больных с CH и его широкое внедрение в клиническую практику, что вероятно, войдет в будущие стандарты диагностики и лечения CH [542].

Бронхолегочный аппарат при XCH: кардиореспираторный синдром

В последние годы внимание исследователей часто обращается к проблеме взаимосвязи поражения бронхолегочного аппарата и XCH. В исследовании ARIC показано, что снижение ОФВ1 и ОФВ1/ФЖЕЛ через 14,9 лет увеличивало риск развития CH в 1,4-3,9 раза[108].

Такие его нарушения, как рестрикция, нарушение диффузии и, в меньшей мере, обструкция часто встречаются при XCH [111, 226, 322, 363, 397, 498, 640, 858]. Они вносят вклад в развитие одышки и переносимость физических нагрузок [283, 528, 599, 748, 907]. Данные о распространенности нарушений функции бронхолегочного аппарата при XCH весьма отличаются в различных публикациях[195, 304, 318, 320, 670, 676, 691, 960]. Это обусловлено малым количеством исследованных больных, различиями
обследованных популяций, а также диагностическими критериями, использованными при анализе [640].

Все исследования, кроме одного, использовали привычные границы нормы [508]. В ряде случаев 80% от должного (например, для диффузионной способности или общей емкости легких) и КТ(ОФВ1/ФЖЕЛ)<70%, которые традиционно используются, могут неправильно классифицировать более 20% больных, приводя к ложно положительным результатам у пожилых и гиподиагностике у молодых [639]. Это объясняется физиологическим снижением КТ с возрастом, поскольку ОФВ1 с возрастом снижается быстрее, чем ФЖЕЛ у здоровых [905]. Часто используется пороговый уровень 80% от должного, у которого нет точного физиологического статистического смысла [859]. Для избежания неправильной классификации Американское торакальное общество и Европейское респираторное общество (ATS/ERS) рекомендуют использовать статистически определенную нижнюю границу нормы (LLN), полученную на основе нормального распределения [716]. Тем не менее до сих пор убедительных данных относительно бесспорного преимущества LLN по сравнению с использованием в качестве нижней границы диапазона нормальных значений 80% от должной величины не получено. Отечественные специалисты на основании анализа 7799 спирограмм считают, что в практической работе для оценки спирометрии целесообразно использовать системы должных значений Р. Ф. Клемента или ECCS (Европейского общества угля и стали)[24]. Исследований функционального состояния легких при ХСН, использующих LLN, крайне мало.

По современным представлениям, в основе кардиореспираторного синдрома при СН лежат застойные явления в легких, приводящие в повреждении токами легких, развитию воспаления оксидативного стресса, нарушению клеточной передачи сигнала[615, 709]. Также к развитию воспаления в ткани легкого могут приводить реперфузионные повреждения почек и печени [669]. В экспериментальных исследованиях при остром
повреждении почек в легких показано повышение сосудистой проницаемости, апоптоз клеток, альвеолярные геморragии, лейкоцитарная инфилтрация за счет повышения продукции или снижения выведения медиаторов воспаления[393]. Нейтрофилы посредством фагоцитоза, активных форм кислорода, протеаз и т.п. усиливают иммунный ответ. Лейкоциты и клетки канальцев почек вырабатывают провоспалительные цитокины, в т.ч. ФНО-α, ИЛ-1 и ИЛ-6. Одновременно идет выработка противовоспалительных цитокинов, например ИЛ-10, которые уменьшают повреждение легких[393]. Задержка восстановления функции почек может препятствовать разрешению воспаления в легких после острого повреждения почек[128].

Кроме того, в генезе поражения легких при СН может играть роль ремоделирование сосудов и фиброз легких. Застой в легких при ХСН инициирует структурное ремоделирование легких путем пролиферации фибробластов и отложения внеклеточного матрикса, что приводит к утолщению альвеолярной стенки [143]. Хотя снижение проницаемости изначально защищает легкие от отека легочной ткани и может рассматриваться в качестве компENSаторного механизма, со временем это может привести к рестриктивным нарушениям, снижению податливости легких с нарушением газообмена и снижением переносимости физических нагрузок. Клинически оценка альвеолярно-капиллярной мембраны оценивается по диффузии оксида углерода. При острой декомпенсации СН она может быть нормальной или повышенной за счет повышения объема крови в альвеолярных капиллярах, а при ХСН она может снижаться [801]. У больных с ХБП также было показано выраженное снижение диффузионной способности оксида углерода, взаимосвязанное с тяжестью повреждения почек. Предполагается, одним из патогенетических факторов кардиореспираторно-почечного повреждения является белок α-Klotho[461]. В исследованиях на животных выявлена его антиоксидантная и антифибротическая способность за счет подавления сосудистого эндотелиального фактора роста и
экспрессии профибротического TGF-b1/Smad3 в эпителии легких [756, 832].

Хроническая гипоксия и сосудистое ремоделирование приводят развитиюстойкойлегочной гипертензии, которая является независимым предиктором смертности [846]. Морфологически при этом развивается гипертрофия меди, гиперплазия интимы и пролифeração адвентиции [846]. Естественное течение легочной гипертензии прогрессирующее с остеобластической трансформацией гладкомышечных клеток сосудов и депозицией кристаллов гидроксиапатита в интерстиций. В результате значительно возрастает жесткость сосудов легких. При этом селективная легочная вазоактивная терапия может привести к ухудшению состояния пациента за счет усиления венозного полнокровия легких и усугубления СН вплоть до отека легких [398].

В последние годы ХПН стала рассматриваться как фактор риска легочной гипертензии. При снижении функции почек распространенность легочной гипертензии увеличивается и в настоящее время стало ясно, что функция почек может сама по себе влиять на легочное сосудистое ремоделирование у предрасположенных больных по аналогии с заболеваниями соединительной ткани, ВИЧ-инфекцией и портальной гипертензией. В патогенезе этого участвуют эндотелиальная дисфункция, снижение biodоступности оксида азота, увеличение уровня эндотелина-1, перегрузка объемом и шунтирование посредством артериовенозных шунтов [701]. Все это привело к появлению нового понятия: кардиореспираторнопочечного синдрома.

В генезе кардиореспираторнопочечного синдрома участвует нарушение газового состава крови. Отражая в большинстве случаев альвеолярную вентиляцию, острые и хронические изменения концентрации углекислого газа вызывают приспособительные механизмы почечной буферизации. Кроме того, при патологии легких гиперкапния приводит к расширению сосудов, снижению системного сосудистого сопротивления и АД, умень-
шению почечного кровотока и СКФ с последующей нейрогуморальной активацією, задержкой натрия и воды [417]. В соответствии с последними данными, нарушения газового состава крови могут оказывать существенное влияние на прогноз при кардиореспираторнопочечном синдроме. Долгосрочное использование неинвазивной вентиляции для снижения гиперкарпии при стабильной ХОБЛ значительно улучшает выживаемость [519]. Показано, что поддержание вентиляции при обструктивном и центральном sleep apnoэ приводит к улучшению почечного кровотока и СКФ [672]. Краткосрочная неинвазивная вентиляция уменьшает альбуминурию, уровень C-реактивного белка и экскрецию норадrenalина почками при СН [882].

Несмотря на имеющиеся данные, остается большое количество неизученных аспектов в проблеме кардиореспираторнопочечных взаимоотношений при ХСН, которые требуют тщательного дальнейшего изучения.

Метаболический синдром при ХСН: кардиометаболический синдром

Многие сердечно-сосудистые заболевания, которые со временем приводят к развитию ХСН, сопровождаются целым рядом метаболических нарушений, включающих абдоминальное ожирение, инсулинорезистентность и компенсаторную гиперинсулинемию, нарушение толерантности глюкозы или сахарный диабет 2 типа, дислипидемию, гиперурикемию, микроальбуминурию и артериальную гипертензию, т.е. метаболическим синдромом.

Распространенность метаболического синдрома в общей популяции составляет 20-40% [79]. Чаще он встречается у лиц среднего и старшего возраста (30-40%) [597]. Такие компоненты метаболического синдрома, как артериальная гипертензия, сахарный диабет и ожирение, являются одновременно и факторами риска развития ХСН [443]. Поскольку распространенность сахарного диабета, ожирения и метаболического синдрома
прогрессивно увеличивается [576], это может привести к значительному увеличению распространенности ХСН в ближайшем будущем.

Хотя ожирение и дисгликемия являются известными факторами риска развития СН, они не показали своего неблагоприятного влияния на прогноз у больных с установленной ХСН. Фактически многочисленные исследования продемонстрировали «оборотную (противоположную, перевернутую) эпидемиологию» ожирения при СН; больший ИМТ был ассоциирован скорее с улучшением, чем с ухудшением прогноза при СН. Удивительно, что высокий по сравнению с низким HbA1с также ассоциировался с лучшим прогнозом у пациентов с выраженной СН. Эти парадоксальные взаимосвязи можно объяснить развитиеммальмальютиаций, кахексии и воспаления при тяжелой СН, ассоциированной с плохим прогнозом[443].

Для понимания механизмов, вовлеченных в прогрессирование диабета, ожирения, метаболического синдрома, развитие СН, выявления дополнительных терапевтических подходов для предотвращения развития СН и поражения органов-мишеней при этом заболевании необходимы дальнейшие исследования.

Генетические предикторы СН и поражения органов-мишеней при этом заболевании

Проект «Геном человека» позволил расшифровать и идентифицировать 25 тысяч генов в человеческом геноме. Эпидемиологические исследования показали, что генетическая предрасположенность вносит существенный вклад в риск развития СН. Во Фрэмингемском исследовании относительный риск развития СН был равен 1,69, если СН была у одного родителя, и 1,92, если СН выявлялась у обоих родителей [549, 582]. При этом некоторые заболевания, приводящие к развитию СН, являются моногенными, т.е. связаны с мутацией одного гена (например, семейные формы кардиомиопатий)[164]. В большинстве случаев ХСН является многофакторным полигенным заболеванием[47].
При полигенной патологии для выявления генетических факторов, способствующей ее развитию, используют два подхода. Один из них представляет собой классический метод поиска ее ассоциации с рядом генов-кандидатов, в то время как другой основан на полном (или частичном) геномном поиске с использованием множества полиморфных маркеров, расположенных на всех хромосомах человека [47].

“Геном-кандидатом” принято называть ген, продукт экспрессии которого (фермент, гормон, рецептор, структурный или транспортный белок) может прямо или косвенно участвовать в развитии патологии. Изучение ассоциации генов-кандидатов с заболеванием проводят с помощью полиморфных маркеров. В геноме человека существует несколько типов полиморфных маркеров, которые могут располагаться внутри или рядом с геном-кандидатом. Во-первых, к ним относятся однокулеотидные полиморфизмы в экзонах, которым часто соответствуют аминокислотные полиморфизмы, а также однокулеотидные полиморфизмы, расположенные в интронах, промоторных или регуляторных областях, в 5'- и 3'-нетранслируемых областях генов. Во-вторых, в качестве маркеров часто используют последовательности ДНК, в которых имеются вставки или делеции одного или нескольких нуклеотидов. В-третьих, к полиморфным маркерам относятся полиморфные мини- или микросателлиты, представляющие собой тандемные повторы с изменяющимся числом повторяющихся единиц. Мини- или микросателлиты могут располагаться или внутри гена, например, в интроне, или рядом с геном в прилежащих районах [47].

В подавляющем большинстве случаев полиморфные маркеры не являются собственно этиологическими вариантами, которые определяют предрасположенность к ХСН, но очень часто они находятся в неравновесии по сцеплению с этими вариантами. Таким образом, по наличию ассоциации или сцепления полиморфного маркера с ХСН можно судить об ассоциации или сцеплении соответствующего этиологического
варианта конкретного гена. В реальном эксперименте изучается распределение отдельных аллелей какого-либо маркера или гена в группах, состоящих из здоровых индивидов и больных. В случае положительной ассоциации для одного или нескольких генетических маркеров наблюдается повышение частот аллелей в группе больных по сравнению с частотами этих аллелей в группе здоровых индивидов [47].

Гены-кандидаты, которые определяют развитие ХСН, можно идентифицировать исходя из биохимической и физиологической функций, кодируемых ими продуктов. Естественно, что при изучении генов-кандидатов при ХСН в первую очередь внимание было обращено на гены, продукты которых участвуют в нейрогуморальной активации, и ряд мембранных белков, осуществляющих передачу сигнала внутрь клеток[47, 123, 164].

Гены-кандидаты, участвующие в нейрогормональной активации

Было исследовано множество генов-кандидатов, участвующих в нейрогормональной активации и их ответ на лечение. В большинстве случаев данные, поддерживающие влияние особых полиморфных маркеров на течение заболевания противоречивы и недостаточно сильны. Тем не менее найденные гены-кандидаты и результаты полногеномных исследований(GWAS) подтверждают участие полиморфных маркеров в прогрессировании ХСН[582].

Полиморфизм генов РААС и ХСН

Поскольку активация РААС – один из ранних и ключевых факторов патогенеза СН, гены ангиотензиногена, АПФ, рецепторов ангиотензина II и альдостерона могут иметь большое значение в патогенезе ХСН[123].

Ген ангиотензиногена (AGT)

Ген, кодирующий ангиотензиноген (AGT), расположен на хромосоме 1q42-43. Для него описано более 15 различных полиморфных маркеров,
наиболее часто используются 2 из них, расположенные в положении 620 (ACG или ATG) и 743 (ATG или ACG) от 5'-конца экзона 2. Этим однонуклеотидным полиморфизмам соответствуют полиморфизмы аминокислотных остатков (треонин или метионин) в положениях 174 и 235 аминокислотной последовательности ангиотензиногена [47]. Третий часто используемый маркер - вариант G(-6)A, который представляет собой замещение 6 пар оснований гуанина на аденоzin, расположенный около области инициации транскрипции в области промотора. Вариант G(-6)A находится в неравновесии по сцеплению с полиморфным маркером M235T и отдельно не рассматривается[164]. Полиморфный маркер T174M связан с изменениями размеров и функционирования сердца [958].

Однако в большинстве исследований не было выявлено взаимосвязи между полиморфным маркером M235T и развитием или прогрессированием ишемической и дилатационной КМП[799, 900, 967]. Описан повышенный риск развития СН у носителей генотипов 235M/T и −G/G[384].

При гипертрофической КМП в одном исследовании у японцев обнаружена повышенная частота аллеля 235T[472], но в других исследованиях это не подтверждилось [967].

Полиморфизм генов ангиотензинпревращающего фермента (АПФ)

Ген, кодирующий АПФ, расположен в хромосоме 17q23. Несмотря на факт, что было обнаружено более 100 полиморфизмов гена АПФ, наиболее часто для анализа ассоциации гена АПФ с заболеваниями используется полиморфный маркер I/D, расположенный в интроне 16. Данный полиморфизм обусловлен наличием (инсекцией - I) или отсутствием (делецией - D) вставки мобильного элемента Alu, длина которого составляет 287 пар нуклеотидов, функция его окончательно не ясна. Важно отметить, что существует корреляция между генотипами этого полиморфного маркера и концентрацией АПФ в сыворотке крови [3]. Генотип II ассоциирован с низким уровнем АПФ, в то время как генотип DD ассоциирован с высоким
уровнем АПФ, генотип ID занимает промежуточное положение [47, 123, 260].

Raynolds и соавт. опубликовали данные по ассоциации полиморфного маркера I/D гена АПФи предрасположенности к СН у европейцев. Они наблюдали превалирование генотипа DD у больных с ишемической и дилатационной КМП по сравнению со здоровыми донорами [758]. Эта ассоциация была подтверждена у 70 китайских пациентов. Однако в большинстве других исследований ассоциация между этим полиморфным маркером АПФ и развитием ХСН не подтвердилась[113, 651, 798].

При этом показана возможная роль полиморфного маркера гена АПФ как модифицирующего экспрессию генов при ХСН[799, 967]. Anderson выявил ассоциацию неблагоприятного прогноза и DD генотипа у 174 шведов с СН [127]. У 57 белых американцев DD генотип был ассоциирован с нарушением переносимости нагрузок[104]. Также выявлена ассоциации D аллеля с повышенением риска смерти и трансплантации сердца у 328 американцев[628]. Candy и соавт. выявили ассоциацию между DD генотипом и снижением функции сердца и увеличением размеров полости ЛЖ [203]. В исследовании 90 греков и 84 турков было выявлено ассоциации между фенотипом СН и генотипом АПФ[113].

При гипертрофической КМП выявлено превалирование генотипа DD гена АПФ у европейцев, особенно при наличии в семьях случаев внезапной смерти[472, 606, 719, 973]. Однако ряд исследователей не обнаружили ассоциации между генотипами АПФ и гипертрофической КМП, в т.ч. ее эхокардиографическими проявлениями [967]. При этом в других исследованиях наблюдалась взаимосвязь генотипа АПФ с фенотипом гипертрофической КМП. В семьях с мутацией миозина связывающего протеина С (МуВР-С) наблюдалось влияние генотипа АПФ на фенотипические особенности гипертрофической КМП[697, 893]. Т.е. как и в случае с ишемической и дилатационной кардиомиопатиями, полиморфный маркер I/D ген-
на АПФ является модифицирующим геном при гипертрофической КМП [164].

В некоторых исследованиях было показано, что у пациентов с генотипом DD отмечалась большая эффективность ингибиторов АПФ и бета-блокаторов[629] и более выраженная гипертрофия миокарда [475, 556].

Ген синтетазы альдостерона (CYP11B2)

Ген CYP11B2 локализуется в хромосоме 8q22 и кодирует фермент, относящийся к группе цитохромов Р450, осуществляющий последнюю стадию биосинтеза альдостерона. Интерес к этому гену и исследование его ассоциации с ССЗ связаны с тем, что перестройки хромосомной области, в которой расположен этот ген, приводят к развитию гиперальдостеронизма [42][47].

В промоторной области гена CYP11B2 был обнаружен однонуклеотидный полиморфизм T/C в положении –344 (замена цитозина на тимидин). Аллель T/C имеет в 4 раза большую способность к связыванию стероидогенного фактора 1, чем аллель T, что ассоциировалось с увеличенной продукцией альдостерона [123]. Полиморфный маркер T(–344)C гена CYP11B2 использовали при изучении ассоциации этого гена с АГ. В двух работах, выполненных на больных финского происхождения, удалось обнаружить ассоциацию этого полиморфного маркера с АГ, размерами и массой ЛЖ, а также с инфарктом миокарда [43 – 44], в то время как в более поздних работах, выполненных на больных немецкого происхождения, не удалось обнаружить ассоциации полиморфного маркера T(–344)C гена CYP11B2 со структурой и функцией ЛЖ [45 – 46][47].

В нескольких исследованиях показана ассоциация между СН и полиморфным маркером C(-344)T. Исследования на европейской и японской популяции не выявили ассоциацию между этим маркером и идиопатической дилатационной КМП [877, 900]. Однако, аллель C был ассоциирован с увеличением объема ЛЖ у японцев[877]. Эти данные не подтвердились у североафриканцев с CH[899]. В исследованиях гипертрофической КМП
также получены противоречивые результаты. Т.е. неоспоримых доказательств роли этого полиморфного маркера при СН нет[164].

Ген рецептора к ангиотензину II типа 1 (AT\(_1\)R\(_1\))

Ген, кодирующий рецептор ангиотензина IIго типа (AT\(_1\)R\(_1\)), локализован в хромосоме 3q21-25. Для гена описано не менее 16 полиморфных маркеров, из них чаще изучаются ассоциации с полигенными наследственными заболеваниями наиболее часто использовали три: динуклеотидный микросателлит в 3’-нетранслируемой области гена [18] и однонуклеотидные полиморфизмы T/C в положении 573 (T573C) и A/C в положении 1166 (A1166C) нуклеотидной последовательности гена AT\(_1\)R\(_1\)[19 – 21]. Полиморфный маркер A1166C, который представляет собой замену аденина на цитозин в позиции 1166, определяет экспрессию рецептора и связан с гипертензией. В частности, присутствие аллеля +1166C, очевидно, элиминирует важную микроRNK (mir-155), связывающую участок, предупреждающий ингибитирование рецептора, которое присутствует при аллеле +1166A. Результатом является увеличенная экспрессия рецептора при аллеле +1166C. Это обусловливает возможность взаимосвязи аллеля +1166C с гипертензией, а также ремоделированием сердца и СН [123, 164]. Но в работе французских авторов, в которой использовали пять полиморфных маркеров (T573C, A1062G, A1166C, G1517T, A1878G) у 267 сибсов пар, происходящих от 138 родословных, не было обнаружено никакого сцепления с АГ [22]. Не было обнаружено ассоциации с АГ полиморфного маркера A1166C и в японской популяции [23] [47].

Потенциальное взаимодействие между полиморфным маркером DD АПФ и генотипами AC/CC гена AT\(_1\)R\(_1\) было описано как предиктор выживаемости у шведов с СН [127]. Большое исследование во французской популяции (CARDIGENE) не ввязывало ассоциации между полиморфными маркерами гена AT\(_1\)R\(_1\) и идиопатической дилатационной КМП [900]. Однако в этом исследовании не проводилось сопоставления случаев заболевания и представителей группы контроля по полу и возрасту. Sanderson и соавт
выявили ассоциацию между аллелем C и клиническим течением СН в китайской популяции [799].

В нескольких исследованиях в японской и европейской популяциях не было показано взаимосвязи между полиморфными маркерами гена $AT_{II}R_1$ и гипертрофической КМП [188, 471, 699]. В некоторых исследованиях было показано, что аллель $1I66C$ может неблагоприятно влиять на фенотипические проявления гипертрофической КМП[697, 699]. Таким образом, $A1166C$ аллель, по-видимому, не увеличивает предрасположенность к СН, а может играть модифицирующую роль в ее патогенезе[164].

Ген рецептора к ангиотензину II типа 2 (AT$_{II}R_2$)

Ген рецептора к ангиотензину II типа 2 ($AT_{II}R_2$) локализуется в X-хромосоме. Его эффекты противоположны эффектам рецептора типа 1[938]. Показана ассоциация полиморфного маркера $A3123C$ этого гена с выраженностью гипертрофии при ГКМП у 103 датчан [269]. Потенциальное взаимодействие между маркером $A1166C$ гена $AT_{II}R_1$ и $A3123C$ гена $AT_{II}R_2$ было определено только у мужчин.

Erdmann и соавт. не выявили существенных различий между частотами аллелей полиморфного маркера $G1675A$ гена $AT_{II}R_2$ у 107 пациентов с гипертрофической КМП, 95 пациентов с дилатационной КМП и группой контроля из 160 человек[314]. У 120 молодых белых мужчин с умеренной АГ, однако, была найдена ассоциация между $1675A$ аллелем и структурными изменениями в сердце[807]. 2 независимых исследования гипертрофии ЛЖ показали противоречивые результаты[422]. Необходимы дальнейшие исследования для определения роли этого полиморфного маркера при ХСН.

Другие гены, продукты которых также участвуют в регуляции тонуса сосудов, тоже могут рассматриваться в качестве генов-кандидатов, вовлеченных в развитие ССЗ и ХСН. К ним относятся ген химазы сердца, ответственный за альтернативный путь биосинтеза ангиотензина II, и ген эндотелиальной NO-синтетазы, обеспечивающей синтез NO[47].
Ген химазы сердца (CMA1)

CMA1 кодирует фермент химазу, ответственный за альтернативный путь биосинтеза ангиотензина II. Недавние исследования показали, что в клетках сердца химаза определяет 75-80% синтеза ангиотензина II, продукция этого фермента обнаружена и в почечной ткани, где на его долю приходится до 50% от общего баланса превращения ангиотензина I в ангиотензин II [26]. В 5’-нетранслируемой области гена CMA1 был обнаружен однонуклеотидный полиморфизм A/G в положении 1903 [47].

Использование полиморфного маркера A(—1903)G гена CMA1 позволило установить, что отсутствует ассоциация этого гена с инфарктом миокарда и увеличенными размерами сердца, но возможна ассоциация аллеля A с гипертрофической КМП[401, 697]. Обнаружить ассоциацию гена химазы с АГ и с гипертрофией ЛЖ в китайской популяции не удалось [47].

Ген эндотелиальной NO-синтетазы (NOS3).

NO вырабатывается из L-аргинина при участии фермента NO-синтетазы. Известно три формы данного фермента. NO-синтетазы нейронов и клеток эндотелия кодируются генами NOS1 и NOS3, соответственно, и синтезируются в клетках головного мозга, нейронах и эндотелии сосудов. NO-синтетаза, продуктов гена NOS2, синтезируется, главным образом, в макрофагах. Несомненно, что при изучении ССЗ наиболее важен фермент, который является продуктом гена NOS3, экспрессирующегося в клетках эндотелия кровеносных сосудов[47].

Ген NOS3 состоит из 26 экзонов. В экзонах и интронах обнаружен ряд полиморфных маркеров, из которых в большинстве исследований использовали три. Первый из них расположен в экзоне 7 – это однонуклеотидный полиморфизм (GAG или GAT) в кодирующей области гена NOS3 в позиции 894 (последовательность ДНК) или 7164 (геномная последовательность) и ему соответствует аминокислотный полиморфизм (остатки глутаминовой кислоты или аспарагиновой кислоты) в положении 298 аминокислотной цепи. Второй полиморфный участок расположен в интроне 4
и относится к тандемным повторам с изменяющимися числом копий (VNTR). Этот полиморфный маркер (ecNOS4a/4b) представлен двумя аллелями - аллелем 4a, в котором имеется 4 повторяющихся фрагмента, и аллелем 4b, в котором таких повторов 5. Третий полиморфный участок T(–786)C расположен в промоторной области гена в положении –786 от участка иницииации транскрипции и представляет собой однонуклеотидный полиморфизм T/C[47].

В случае полиморфного маркера ecNOS4a/4b обнаружена корреляция между генотипами и уровнем нитратов и нитритов в крови, напрямую связанной со скоростью выработки NO эндотелием сосудов. Носители генотипа 4b/4b имеют уровень нитратов и нитритов в крови на 25% выше, чем носители генотипа 4a/4a[34]. Таким образом, можно говорить о потенциальной генетической роли генотипа 4a/4a как фактора риска развития атеросклероза и заболеваний, приводящих к нарушению нормальной выработки окиси азота [34 – 35] [47].

Недавно получены экспериментальные данные, что хотя изоферменты с остатками глутаминовой кислоты и аспарагиновой кислоты в положении 298 имеют одинаковую удельную активность, но изофермент типа Asp398 более подвержен протеолизу внутри клеток и, таким образом, эффективная концентрация этого изофермента ниже [36]. Эти данные позволяют объяснить ранее обнаруженную ассоциацию аллеля Asp398 с повышенным риском развития АГ, инфаркта миокарда и цереброваскулярной болезни [37 – 38] [47]. Выявлена взаимосвязь аллель Asp полиморфного маркера Glu298Asp гена NOS3 с фенотипом СН [630].

Гены эндотелина и его рецепторов

Исследования дилатационной КМП не выявили связи между полиморфными маркерами гена эндотелина-1 и этим заболеванием [421, 892]. Brugada и соавт. показали, что полиморфный маркер G8002A в 4-м интроне гена эндотелина-1 на 6 хромосоме может действовать как модифицирующий ген при гипертрофической КМП [188]. В исследовании
CARDIGENE замена цитозин/тимидин (C/T) в экзоне 8 в положении 1363 была ассоциирована с идиопатической дилатационной КМП [892]. Риск заболевания был значительно повышен у гомозигот по T аллелю. Замена C/T в экзоне 6 в положении 69, которая не нарушила аминокислотной последовательности рецептора, была ассоциирована с выживаемостью больных с неишемической дилатационной КМП [421]. Риск смерти в течение 2 лет после диагностики у носителей T аллеля был в 5 раз выше. В исследовании 528 нелеченных больных с АГ показано, что варианты генов эндотелина-1 и его рецепторов типа А не являются значимыми детерминантами морфологических характеристик сердца [540]. Значимых ассоциаций для полиморфных маркеров генов рецепторов к эндотелину типа В найдено не было [164].

Полиморфизм генов β-адренергических рецепторов и ХСН

Важную роль в развитии ХСН играет симпатическая нервная система. Аренергические рецепторы представляют собой трансмембранные G-белки, состоящие из семи доменов. В качестве источника энергии они используют гуанозинтрифосфат (ГТФ). Разные члены этого большого семейства экспрессируются в разных типах клеток [47].

Генβ1-адренергического рецептора (ADRB1)

Через β1-адренергический рецептор (ADRB1), экспрессирующийся в кардиомиоцитах, осуществляются хронотропный, инотропный и люзитропный (люзитропия — способность к релаксации) эффекты катехоламинов [292]. Ген, кодирующий ADRB1, расположен в хромосоме 10q24-26 и не содержит интронов [123]. Большое количество различных полиморфных маркеров было проанализировано в качестве возможных модификаторов риска развития СН и прогноза [582].

Наиболее стойкие и воспроизводимые ассоциации затрагивают полиморфный маркер Arg389Gly. Он связан с заменой гуанина на цитозин в 1165, что приводит к замене аминокислоты аргинина на глицин в положе-
нии 389. Аллель 389Arg характеризуется более высоким уровнем активации аденилатциклазы, повышенной сократимостью и более чувствительностью к β-адреноблокаторам. Наоборот, аллель Gly389 характеризуется сниженной сократимостью и менее выраженным ответом на β-адреноблокаторы [582].

В работе на шведской популяции показана ассоциация полиморфного маркера Arg389Gly гена ADRB1c с АГ, причем исследование было основано как на сравнении частот аллелей и генотипов в группах с АГ (n = 292) и без АГ (n = 265), так и на анализе уровня давления и частоты ритма у сибсов, являвшихся носителями различных генотипов. Носители аллеля Arg389 имели существенно более высокий риск развития АГ, чем носители аллеля Gly389[833]. В исследовании, выполненном на японской популяции, удалось обнаружить тенденцию к ассоциации полиморфного маркера Arg389Gly гена ADRB1 с АГ у мужчин [47, 536].

В исследовании CARDIGENE ассоциации полиморфного маркера Arg389Gly гена ADRB1 с наличиемидиопатической дилатационной КМП и тяжестью заболевания выявлено не было [892]. В других исследованиях тоже была показана недостаточная взаимосвязь между этим маркером ивероятностью развития СН[734, 852, 877].

В клинических исследованиях показана взаимосвязь полиморфного маркера Arg389Gly гена ADRB1 особенностями течения СН. Плохая переносимость физических нагрузок у больных с ишемической или идиопатической дилатационной КМП, гомозиготных по Gly389 по сравнению с больными, гомозиготными по Arg389, у гетерозигот переносимость была промежуточной[940]. Это свидетельствует о значении маркера Arg389Gly гена ADRB1 как модификатора заболевания. Кроме того, при наличии аллеля Arg389 как при гомо-, так и при гетерозиготности по нему отмечался лучший терапевтический ответ на метопролол [889, 890] и карведилол [216].
Исследования больных с патологией почек выявило большую массу миокарда у гомозигот по Gly389 [865]. Напротив, исследование кардиомиопатий в японской популяции показало защитную роль аллеля Gly389: снижение вероятности желудочковой тахикардии при его носительстве [877].

В недавнем исследовании при изучении комбинации полиморфного маркера Arg389Gly гена ADRBI1 и полиморфного маркера Gln27Glu гена ADRB2 выявлено, что при комбинации риск смерти увеличивается в 2 раза по сравнению со всеми другими комбинациями генотипов при СН, леченной карведилолом. Различий в выживаемости при лечении СН между группами, выделенными в зависимоми от генотипа, не было. Если это подтвердится в крупных исследованиях, это может привести к участию β-адренергического генотипирования в выборе препаратов для лечения СН [582].

Другой полиморфный маркер – замена аденина на гуанин в положении 145, который приводит к замене аминокислоты серина на глицин (Ser49Gly) в положении 49. Участок белка, в котором расположен полиморфизм Ser49Gly, находится во внеклеточном N-концевом фрагменте рецептора [47]. Хотя и не во всех исследованиях, было показано, что Gly49 подобно Arg389 усиливает сократительный ответ и денситизацию в ответ на стимуляцию агонистами [123].

При исследовании дилатационной КМП было показано, что 5-летняя выживаемость без трансплантации сердца была хуже у гомозигот по Ser49, чем у остальных [609]. Частота аллелей у больных и представителей контрольной группы не различалась. В другом исследовании выявлено ухудшение переносимости физических нагрузок у гомозигот Ser49C ишемической и дилатационной КМП по сравнению с носителями Gly49 [940]. Podlowski и соавт. выявляли мутацию Gly49 при идиопатической дилатационной КМП и не выявляли в контрольной группе [734].

Еще один полиморфный маркер гена ADRB1 T-2146C ассоциирован с идиопатической дилатационной КМП [734]. Для выявления роли поли-
морфных маркеров ADRB1 при ХС требуются дальнейшие исследования [164].

Ген β2-адренергического рецептора (ADRB2)

Ген β2-адренергического рецептора (ADRB2), расположен в хромосоме 5q31-32. Два из многочисленных вариантов гена, Arg16Gly и Gln27Glu, показали взаимосвязь с функциональными изменениями сердца. В исследованиях invitro было выявлено, что Gly16 и Gln27 более предрасположены к десенситизации, чем Arg16 и Glu27. Некоторые исследования exvivo и invivo у людей показали, что Gly16 более устойчив к агонист-зависимой десенситизации, чем Arg16. Эти противоречивые результаты объяснить не легко, возможно, основой является предомinantная десенситизация Gly16 эндогенными катехоламинами [123].

Кроме этих полиморфизмов, было показано, что полиморфизм Thr164Ile модулирует сердечный сократительный ответ invivo и invitro. Ile164 характеризуется меньшей базальной и агонист-зависимой внутриклеточной активацией эффектором, сократительной реакцией и ЧСС, чем Thr164[123].

Обнаружена ассоциация полиморфного маркера Arg16Glyс АГ. Повышенный риск развития АГ был обнаружен у носителей аллеля Gly полиморфного маркера Arg16Gly в норвежской и шведской популяциях, а также у представителей негроидной расы Карибских островов [47].

В то же время никакой ассоциации полиморфных маркеров гена ADRB2 с АГ не было обнаружено в итальянской (Arg16Gly и Gln27Glu) и польской (Arg16Gly, Gln27Glu и Thr164Ile) популяциях. При этом следует отметить, что в польском исследовании в случае полиморфного микросателлитного маркера D5S1480, расположенного в непосредственной близости к гену ADRB2, обнаружено выраженное сцепление и ассоциация с АГ [97]. Существует несколько возможных объяснений этих противоречий. Во-первых, ген ADRB2 действительно может определять предрасположенность к АГ в
ряде изученных популяций, однако полиморфные маркеры, использованные в большинстве работ, не относятся к функционально важным и только находятся в неравновесии по сцеплению с функционально важными полиморфизмами этого гена [47].

Второе возможное объяснение основано на учете того, что к функционально важным могут относиться несколько полиморфизмов гена ADRB2. В таком случае в формирование генетической предрасположенности к АГ существенный вклад будут вносить не аллели отдельных маркеров, а гаплотипы, в состав которых входят определенные аллели нескольких маркеров. И, наконец, третья возможность – это наличие другого гена, расположенного рядом и определяющего предрасположенность к АГ. Это вполне может быть один из генов, кодирующих α1b-адренергический рецептор (ADRA1B) или же рецептор допамина D1 (DRD1) [47].

В одном из исследований не было выявлено различий по частоте полиморфных маркеров Arg16Gly, Gln27Glu и Thr164Ile гена ADRB2 у больных с СН и в контрольной группе [562]. Однако выживаемость гетерозигот по Ile164 была значительно хуже, чем у гомозигот Thr164. В другом исследовании показано, что у больных с СН носителей аллеля Ile164 и Gly16 ниже переносимость физических нагрузок, чем у гомозигот Thr164 и Arg16[939]. Полиморфизм Thr164Ile гена ADRB2 встречается редко: в этих двух исследованиях не было гомозигот по Ile164. Выявлена ассоциация полиморфного маркера Gln27Glu этого гена с прогнозом у больных острым коронарным синдромом.

Ген β3-адренергического рецептора (ADRB3)

Ген ADRB3 расположен в области 8p12-p11.2 и экспрессируется, главным образом, в адипоцитах. β3-адренергический receptor играет важную роль в процессах липолиза, индуцируемого катехоламинами. Существует точка зрения, что именно генетически обусловленные варианты этого гена отвечают за популяционное разнообразие и индивидуальные различия в эффективности использования жиров и типе распределения
жировых накоплений в теле. Внутри кодирующей последовательности этого гена обнаружен однонуклеотидный полиморфизм, которому соответствует аминокислотный полиморфизм Trp64Arg [98] [47].

Ассоциация полиморфного маркера Trp64Arg гена ADRB3 изучалась, главным образом, на больных с ожирением, пониженной чувствительностью к действию инсулина, ранним развитием СД типа 2 и АГ. В работе, проведенной на двух небольших группах японских больных с СД типа 2, у части из которых наблюдалась АГ (n = 37), а у других было нормальное давление (n = 46), ассоциации с АГ полиморфного маркера Trp64Arg гена ADRB3 обнаружено не было. В то же время на двух группах пациентов с АГ (n = 213) и без АГ (n = 271) с острова Сардиния была обнаружена ассоциация полиморфного маркера Trp64Argc АГ [100]. Аналогичные результаты получены и на немецких больных (n = 417) с СД типа 1 [101]. К этим результатам следует подходить осторожно, так как в ассоциативных исследованиях трудно разделить вклад, который вносит ген ADRB3 в развитие АГ, от того вклада, который он вносит в развитие ожирения, пониженной чувствительности к действию инсулина и раннему развитию СД типа 2, а, как известно, у пожилых пациентов эти заболевания часто развиваются параллельно [47]. У больных с ХСН полиморфный маркер Trp64Arg гена ADRB3 изучен недостаточно.

Полиморфизм генов α-адренергических рецепторов

α1-адренергические рецепторы (ADRA1) включают 3 подтипа, гены которых расположены в разных хромосомах. В сердце человека, по-видимому, происходит трансляция и функционирование только α1А- и α1В-рецепторов (ADRA1A и ADRA1B). Было показано наличие нескольких вариантов генов, хотя многие из них встречаются редко и не имеют функциональных особенностей. Распространенный вариант α1А-рецепторов, результат замены аргинина на цистеин в положении 347 (Arg347Cys), был выявлен invitro. Различий в отношении связывания с антагонистами и аго-
нихстами, внутриклеточной концентрации кальция и десенситизации этих вариантов рецептора при стимуляции норадреналином не показано. Напротив, другой генетический полиморфизм Gly247Arg усиливает связывание G-белка, продукцию инозитол-фосфата и рост клеток. Более того, ряд полиморфизмов, включая Arg166Lys и Val311Ile, локализованных в трансмембранных доменах, как сообщалось, снижает связывание лигандов и активацию рецепторов. По имеющейся информации, эти три подтипа у больных с СН не изучены [123].

В кодирующей последовательности гена ADRA1B обнаружен однонуклеотидный полиморфизм, которому соответствует аминокислотный полиморфизм Arg492Cys. Полиморфный маркер Arg492Cys гена ADRA1B использовали для изучения ассоциации с АГ среди европейцев и афроамериканцев. Ассоциации с АГ в обеих группах обнаружено не было, однако были выявлены значительные межрасовые отличия в частотах аллелей [47].

α2-адренергические рецепторы (ADRA2) также включают 3 подтипа. α2A- и α2C- (ADRA2A и ADRA2C) кодируются прямыми генами и участвуют в контроле высвобождения норадrenalина в пресинаптических нервных окончаниях. Некоторые генетические варианты α2A-рецепторов (ADRA2A), которые могут влиять на функциональные возможности, были описаны при СН. Один из них связан с наличием в положении 251 аспарагина или лизина (Asn251Lys). Lys251, как было показано, усиливает сродство к Gi-белкам, эффективное ингибиционное аденилилциклазы и активацию мито-ген-активируемых протеинкиназ. Следовательно, этот вариант может уменьшать высвобождение норадrenalина и оказывать защитное действие при активации симпатоадреналовой системы, например при СН.

Генетические варианты α2C-рецепторов (ADRA2C) тоже влияют на функциональные возможности и быть взаимосвязаны с СН. Делеция в положении 322-325 (Del322-325) затрагивает 4 хромосому, представляет собой делецию 12 нуклеиновых кислот, которая приводит к появлению ре-
цептора с недостаточным содержанием 4 аминокислот (глицин, аланин, глицин, пролин) в трети межклеточной петли[148]. В результате у нового рецептора уменьшено лиганд-связывающее сродство, адреналин-зависимое сродство к Gi-белкам, продукция инозитолфосфата и стимуляция митоген-активируемых протеинкиназ [123]. Small и соавт обнаружили, что у африканцев, гомозиготных по маркеру Del322-325 гена ADRA2C вероятность СН в 5 раз выше, чем у остальных[852]. В двухлокусном анализе показана значимая взаимосвязь между маркером Del322-325 гена ADRA2C и маркером 389Arg гена ADRB1. Маркер Del322-325 гена ADRA2C в 10 раз чаще встречался у африканцев, чем у европейцев. Этот полиморфный маркер является важным кандидатом для дальнейшего исследования генетических факторов при СН [852].

Ген ADRA2B расположен на хромосоме 2. В третьей внеклеточной петле этого рецептора расположен блок из 12 остатков глутаминовой кислоты в положении 297 – 309. Обнаружены две аллельные формы этого рецептора, содержащие 12 или 9 остатков глутаминовой кислоты. На основе этого полиморфизма был разработан полиморфный маркер I/D, который использовали для изучения ассоциации с АГ на трех различных популяциях. В европейской популяции, в США и в финской популяции ассоциации обнаружено не было, а в популяции Южной Швеции была обнаружена ассоциация полиморфного маркера I/D гена ADRA2B с АГ, но только после исключения из исследования пациентов с СД типа 2 [47].

Полиморфизм генов сигнальной системы G-белка

Кроме вторичных посредников протеинкиназ, особый класс G-белок-связанных рецепторкиназ (GRK – G-proteinreceptorkinases) модулируют агонист-зависимую десенситизацию и интернализацию G-белок-связанных рецепторов. Из 7 изоформ, в миокарде преобладают GRK2 и GRK5 и, как было показано, играют роль в развитии СН. GRK2 показал отсутствие полиморфизмов, тогда как у GRK5 было обнаружено 4 несинонимических
варианта[123]. Из них, замена лейцина на глутамин в положении 41
(\textit{Gln41Leu}) усиливает изопротеренол-зависимую десенситизацию и пони жает сигнальную способность \(\beta_1 \)-адренергических рецепторов[561, 943]. \(\textit{Leu41} \) оказывает защитное влияние при экспериментальной кардиомиопатии, стимулированной катехоламинами. В двух исследованиях показано улучшение выживаемости без необходимости проведения трансплантации у гомо- и гетерозигот по этому аллелю[246, 293].

\noindent \textit{Ген субъединицы \(\beta_3 \) белка G (GNB3)}

Субъединица \(\beta_3 \), кодируемая геном \(GNB3 \), входит в состав белка G, состоящего из трех субъединиц (\(\alpha \), \(\beta \) и \(\gamma \)). Название многочисленных белков (белки G), входящих в это семейство, связано с тем фактом, что все белки этого семейства связывают гуанозинтрифосфат (ГТФ) и расщепляют его до гуанозиндифосфата (ГДФ). К настоящему времени у человека обнаружено, как минимум, 16 различных типов \(\alpha \)-субъединиц, 5 типов \(\beta \)-субъединиц и 12 типов \(\gamma \)-субъединиц. Все белки G относятся, к так называ емым, пропеллерным рецепторам и при анализе их пространственной ор ганизации можно условно выделить семь лопастей пропеллера [47].

Белки G расположены, главным образом, в цитоплазматической мембране и их функцией является передача внешних сигналов внутриклеточным регуляторным белкам. \(\beta \)- и \(\gamma \)-субъединицы образуют стабильный функциональный димер и от того, какие именно \(\beta \)- и \(\gamma \)-субъединицы входят в состав димера зависит специфичность конкретного полного комплекса (белок G) при передаче сигнала [47].

Активация рецептора происходит в тот момент, когда \(\alpha \)-субъединица освобождает связанный ГДФ в обмен на ГТФ, что, собственно, и вызывает диссоциацию \(\alpha \)-субъединиц и димера, состоящего из \(\beta \)- и \(\gamma \)-субъединиц (\(\beta\gamma \)-димер). В диссоциированном состоянии, как \(\alpha \)-субъединица, так и \(\beta\gamma \)-димер могут активировать или ингибировать действие многих внутриклеточных регуляторных белков, к которым относятся белки ионных каналов, фосфолипазы, изоформы аденилатциклазы, киназы типа Р13 и MAP, а так-
же ряд других сигнальных факторов. Благодаря ГТФ-азной активности, α-субъединица расщепляет ГТФ до ГДФ. После этого α-субъединица и β-γ-димер реассоциируют в полный комплекс, который вновь становится готов для следующего цикла активации [47].

Таким образом, активация белка G лимитирует скорость передачи сигнала внутри клетки. Следовательно, наличие мутаций или полиморфизмов, влияющих на функцию различных субъединиц белка G или на уровень их экспрессии, может вызывать существенные изменения в эффективности передачи сигнала внутри клетки. Вполне возможно, что действие многих препаратов осуществляется через активацию одного из подтипов белков Ги, генетические особенности влияют на оптимальные дозы и эффективность действия ряда лекарственных препаратов[47].

К настоящему времени установлено, что именно белки G опосредуют передачу внутри клеток сигналов, контролирующих тонус сосудов, а также и пролиферацию многих типов клеток. Кроме того было показано, что именно через белки G осуществляется активация многих сигнальных цепей, в том числе и β-адренергического сигнального пути [47].

В последовательности гена GNB3, кодирующего субъединицу типа β3, обнаружен однонуклеотидный полиморфизм C/T в экзоне 10 в положении 825 по последовательности мРНК (положение 5500 по геномной ДНК). Хотя в обоих случаях кодируется одинаковая аминокислота серин (Ser), в клетках носителей аллеля T была обнаружена укороченная субъединица β3, получившая обозначение Gβ3s [51]. Детальное изучение нуклеотидных последовательностей гена GNB3 позволило установить, что наличие остатка T в положении 825 коррелирует с прохождением альтернативного варианта сплайсинга (удаления интронов), при котором используется обычно “молчачий” участок сплайсинга внутри экзона 9. Этот участок взаимодействует с участком сплайсинга на 3'-конце экзона 8 и, таким образом, в клетках носителей аллеля T из мРНК гена GNB3 удаляется до-
полнительный фрагмент длиной 123 нуклеотидов, что приводит к синтезу укороченной на 41 аминокислоту субъединицы β3 (Gβ3s) [47].

Точный механизм реализации альтернативного механизма сплайсин-га до сих пор не выяснен, однако, установлено, что три одинонуклеотидных полиморфизма, два из которых расположены в интроне 9 и один в промоторной области, находятся в полном неравновесии по сцеплению с полиморфизмом C825T. Кроме того, расчет вторичной структуры пре-мРНК для двух вариантов гена показал, что конформации этих вариантов существенно различаются. По всей видимости, вероятность реализации одного из вариантов сплайсинга зависит от вторичной структуры пре-мРНК, которая в свою очередь определяется наличием определенных нуклеотидов в полиморфных участках интрона 9 и экзона 10 [47].

Следует отметить, что в клетках носителей генотипа TT реализуются оба варианта сплайсинга и, соответственно, синтезируются оба варианта β3-субъединицы: Gβ3 и Gβ3s, различающиеся по длине на 41 аминокислоту. Сравнение рассчитанных пространственных структур этих двух вариантов показало, что в отличие от структурной организации в виде пропеллера с семью лопастями, характерной для субъединицы Gβ3, у субъединицы Gβ3s отсутствует одна из лопастей пропеллерной структуры [47].

В ряде работ было показано, что аллель 825T ассоциирован с усиленной активацией белка G и, как следствие этого, с усиленной передачей сигнала внутрь клетки. Это, в свою очередь, сопровождается ускорением роста клеток и их пролиферации. Другим проявлением повышенной активности белка G, содержащего субъединицу Gβ3s (кодируемая аллелем 825T), является активация систем транспорта ионов натрия внутрь клеток, а протонов в противоположном направлении. Этот процесс осуществляется семейством белков NHE (от английского Na+-H⁺exchanger) и играет важную роль в поддержании необходимого уровня рН как внутри клеток, так и в митохондриях по отношению к цитоплазме. Показано, что уровень
активности натриево-протоновых ионообменников (NHE), который регулируется с помощью белка G, увеличен у пациентов с ГБ[47].

Большинство исследований, проведенных на европейцах, подтверждают ассоциацию полиморфного маркера C825T гена GNB3 с эссенциальной АГ. Т.е. носители аллеля 825T имеют повышенный риск развития АГ (OR 1,3 – 1,8). Но в ряде исследований, особенно в восточно-азиатских популяциях, эта ассоциация не подтвердилась [47]. Наиболее вероятно, что аллель 825T гена GNB3 ассоциирован с определенной формой гипертонии, которая существенно более распространена среди европейских, чем среди восточно-азиатских популяций. Шункерт и соавт. [52] высказали предположение, что аллель 825T гена GNB3 ассоциирован с АГ, главным образом, у индивидов, для которых характерно низкое содержание ренина [47]. Ванг и соавт. обнаружили повышенный уровень альдостерона и пониженную активность фермента, превращающего ангиотензин I, у китайских пациентов – носителей генотипа TT гена GNB3. Эти данные в какой-то мере коррелируют с данными Шункерта и соавт., полученными на пациентах с низким содержанием ренина [47]. Также аллель T полиморфного маркера C825T гена β3-субъединицы G-белка был взаимосвязан с размерами ЛЖ [733, 824].

Ассоциация 33-х однонуклеотидных полиморфных маркеров, принадлежащих к 27-ми генам, с АГ была изучена на большой группе индивидов (1940) японского происхождения. Полиморфные маркеры только двух генов были достоверно ассоциированы с АГ у мужчин: C825T гена GNB3 и G190A гена CCR2, кодирующего рецептор хемокинов типа 2. У женщин ассоциация с АГ была обнаружена только в случае полиморфного маркера G(–238)A гена ФНО[47].

В ряде работ также показана ассоциация полиморфного маркера C825T гена β3-субъединицы G-белка с риском атеросклероза, аритмий, ожирения, метаболического синдрома и сахарного диабета.
У больных с ХСН клинико-диагностическая ценность полиморфного маркера C825T гена β3-субъединицы G-белка до настоящего времени не определена.

Гены аддуцина (ADD1, ADD2 и ADD3).

Аддуцины относятся к белкам цитоскелета клетки. Предполагается, что, с одной стороны, аддуцины осуществляют передачу сигналов внутрь клетки, а, с другой стороны, обеспечивают транспорт ионов через клеточную мембрану. У человека все аддуцины состоят из двух различных субъединиц (α в сочетании с β или γ), кодируемых тремя гомологичными генами (ADD1, ADD2 и ADD3). Все три субъединицы имеют похожую структурную организацию, для них характерно наличие N-концевой последовательности, устойчивой к действию протеаз, и гидрофильного C-концевого участка, чувствительного к действию протеаз. Для всех генов также характерно наличие альтернативного сплайсинга, что приводит к образованию многих изоформ этих белков [47].

Аддуцины представлены во многих тканях организма, в том числе в клетках мозга, почек и печени. При сравнительном исследовании экспрессии генов аддуцинов Гиллигэн и соавт. показали, что экспрессия α- и γ-аддуцинов обнаруживается в большинстве тканей организма, а высокий уровень экспрессии β-аддуцина наблюдается только в клетках мозга и в клетках системы гемопоэза, главным образом, в клетках костного мозга [47].

При сравнении аминокислотных последовательностей α-аддуцина крыс инбредной линии «Милан» с повышенным давлением с крысами той же линии с нормальным давлением были обнаружены два существенных различия этих последовательностей. Основываясь на том факте, что гены α-аддуцина крысы и человека высоко гомологичны, было проведено изучение ассоциации ряда полиморфных микросателлитов, расположенных
около гена ADD1, с гипертонией у человека и, действительно, ассоциация этих маркеров с АГ была обнаружена [47].

Та же группа авторов обнаружила в гене α-аддуцина полиморфизм Gly460Trp, для которого была обнаружена ассоциация с большей чувствительностью к изменениям натриевого баланса, что позволило высказать предположение о том, что ген α-аддуцина ассоциирован с АГ. В ряде работ, удалось подтвердить ассоциацию полиморфного маркера Gly460Trp гена ADD1 с АГ, но в некоторых исследованиях такой ассоциации не было. Противоречивость результатов может быть связана с тем, что ассоциация полиморфного маркера Gly460Trp гена ADD1 с АГ более выражена у полных пациентов с умеренно увеличенным уровнем триглицеридов. Другими причинами этих противоречий могут быть различия критериев, использованных при подборе групп и то, что полиморфный маркер Gly460Trp гена ADD1 сам по себе не является функционально важным, хотя и находится в частичном неравновесии по сцеплению с другим функционально важным полиморфизмом этого гена [47].

Для генов β- и γ-аддуцинов также были разработаны полиморфные маркеры. Ассоциации полиморфного маркера C1797T гена ADD2 с АГ обнаружено не было. Полиморфный маркер A386G гена ADD3 сам по себе также не ассоциирован с АГ. Однако, у носителей аллеля Trp гена ADD1, у которых этот аллель сочетается с носительством генотипа GG гена ADD3, наблюдаются повышенные уровни (в среднем на 8 мм ртутного столба), как диастолического, так и систолического давления, что позволило авторам сделать вывод об эпистатическом взаимодействии генов ADD1 и ADD3 [47].

Эпистатические взаимодействия были обнаружены также между генами α-аддуцина (ADD1), фермента, превращающего ангиотензин I (АПФ), и синтетазы альдостерона (CYP11B2). Авторам удалось показать, что именно сочетанное носительство определенных генотипов этих трех
генов коррелирует с широтой распространения и частотой встречаемости АГ среди европейцев [47].

Аллель Trp полиморфного маркера Gly460Trp гена α-аддуцина был взаимосвязан с размерами ЛЖ [824]. У больных с ХСН полиморфные маркеры генов аддуцинов изучены недостаточно.

Другие полиморфные маркеры при ХСН

При ХСН исследовали другие полиморфные маркеры генов, продукты которых играют роль в ремоделировании миокарда, воспалении, передаче межклеточных сигналов, защите от оксидативного стресса. Ген рецепторов к брадикинину (+9 аллель) был взаимосвязан с размерами ЛЖ [189]. Аллель A полиморфного маркера G-308A гена ФНО был ассоциирован с дилатационной, гипертрофической КМП и размерами ЛЖ [275, 474, 714]. Полиморфный маркер Leu10Pro гена трансформирующего фактора B1 был взаимосвязан с развитием СН и дилатационной КМП [442]. Аллель Val полиморфного маркера Ala16Val гена супероксиддисмутазы 2 был взаимосвязан с дилатационной КМП [437]. Аллель T полиморфного маркера G994T гена тромбоцитактивирующего фактора был ассоциирован с дилатационной и гипертрофической КМП [463, 968]. Аллель Ile полиморфного маркера Val64Ile гена хемокинового рецептора 2 был взаимосвязан с развитием СН [696]. Аллель ε4 гена аполипопротеина E взаимосвязан с развитием СН и размерами ЛЖ [970]. Ген аденоznй монофосфат дезаминазы 1 был ассоциирован с фенотипом СН [579]. Для определения точной роли этих маркеров в развитии и модификации СН необходимы дальнейшие исследования [164].

Важную роль в регуляции транскрипции и поддержании геномной стабильности играет белок р53. Повреждение ДНК способствует накоплению р53, который блокирует прогрессию клеточного цикла в фазе G1, препятствуя таким образом репликации ДНК до репарации повреждения. Если репарация повреждения невозможна, то белок р53 запускает механизм апоптоза [68]. Исходя из того, что апоптоз может являться одним из меха-
низмов развития поражения органов-мишеней при ХСН, можно вполне обоснованно предположить, что ген TP53, кодирующий белок p53, может быть одним из генов-предикторов развития поражения органов-мишеней при ХСН.

Ген TP53 расположен на хромосоме 17q13.1. В этом гене во фланирующих участках обнаружен ряд полиморфных участков, в том числе однонуклеотидный полиморфизм G/C, которому соответствует аминокислотный полиморфизм Pro/Arg в положении 72 полипептидной цепи. Произведенные зарубежные исследования полиморфных маркеров гена TP53 в основном посвящены генетической предрасположенности к раку. В работе Российских исследователей показана ассоциация полиморфного маркера Pro72Arg гена TP53 с поражением нервной системы (развитием диабетической полинейропатии) у больных с сахарным диабетом типа1 [68]. Ассоциация полиморфного маркера Pro72Arg гена TP53 с СН до настоящего времени не изучена.

Локусы генетической предрасположенности полногеномных исследований

До 2007 года подход определения генов-кандидатов доминировал в качестве аналитического инструмента в эпидемиологических генетических исследованиях у человека. Затем для выявления генетических ассоциаций стали широко проводить полногеномные исследования (GWAS) [273, 922]. Эти исследования изначально не основаны на гипотезе локализации генетических вариантов, влияющих на развитие патологии, поэтому они дают возможность произвести мощные и беспристрастные исследования для идентификации локусов генетической предрасположенности для часто встречающихся заболеваний[582]. Используя специальные платформы, состоящие из миллионов однонуклеотидных полиморфных маркеров, находящихся в геноме, этот метод выявляет частые варианты генов, связанные с развитием определенной патологии[98].

Преимущества подхода поиска генов-кандидатов в том, что, во-первых, исследование их ассоциации с СН может выявить корреляцию с
биологическими механизмами. Кроме того, мутации, используемые при изучении генов-кандидатов иногда являются функциональными вариантами, и приводят к изменению фенотипа. Наконец, могут встречаться редкие варианты заболеваний и, соответственно, уникальные гены-кандидаты могут инициировать патогенез дисфункции ЛЖ, но только в ограниченных популяциях. Ограничения подхода определения генов-кандидатов, во-первых, плохая воспроизводимость результатов исследований. Во-вторых, гены, изучаемые при этом, выбираются предвзято в соответствии с патогенетическими воззрениями и с игнорированием других генов. Например, хорошо известно, что кальциевая передача сигналов играет ключевую роль в функционировании ЛЖ, но до сих пор гены этого пути не были проанализированы [273].

Преимуществом GWAS является то, что результаты беспристрастны и надежны в определении триггерных генов СН, они преодолевают проблему воспроизводимости, которая имеется у подхода выявления генов-кандидатов. Ограничения GWAS – однонуклеотидные полиморфные маркеры, используемые в них имеют минимальную частоту аллеля по крайней мере 5% и те SNP, частота которых ниже пороговой, но значима для СН в определенной популяции, исключаются из скрининга. Во-вторых, выявляемые в GWAS сигналы просто указывают на соседство с геном, в большинстве случаев, в интронах и межгенных участках, а не прямо идентифицируют функциональный генетический вариант, ответственный за СН. Например, HSPB7, который изначально был выявлен для систолической СН, оказался маркером другого гена, с которым он находится в неравновесии по сцеплению геном вольтажчувствительного калиевого канала (CLCNKA). В третьих, выявление причинного гена-кандидата в GWAS не обязательно приводит к нашему пониманию механизма, лежащего в основе функционирования гена, приводящего к СН и соответственно мало могут влиять на подходы к ведению пациентов с этим заболеванием. Наконец, размер выборки в GWAS и различные причины СН могут увеличить труд-
ности в определении локусов генетической предрасположенности при CH[273].

Недавно опубликованы результаты двух полногеномных исследований, использо"вавших более 2,4 миллионов однонуклеотидных полиморфных маркеров (SNP) у >20000 субъектов для выявления ассоциации с систолической CH. Были выявлены ассоциации полиморфных маркеров, связанных с развитием CH: в гене убиквитин-специфической пептидазы 3 (ubiquitinspecificpeptidase 3, USP3) у лиц европейского происхождения и leucine-richrepeatsandimmunoglobulin-likedomains 3 (LRIG3) у лиц африканского происхождения. Третий SNP, расположенный в гене CMTM7 (CKLF-likeMARVELtransmembranedomaincontaining 7), был связан со смертностью при CH. Для всех трех полиморфных маркеров отношение рисков составило 1,5[653, 857]. Группа генов MTHFR-CLCN6-NPPA-NPPB ассоциирована с N-терминальным продуктом расщепления В-типа натрийуретического фермента, являющего маркером функции ЛЖ и АД. Результаты GWAS при диастолической CH пока не опубликованы [273].

USP3 и LRIG3 не соответствуют никаким известным генам-кандидатам, которые механически связаны с систолической дисфункцией, ни каким-либо генам, ответственным за моноэпигенные формы кардиомиопатий. Т.е. гены, инициирующие полигенную CH, - это гены, обладающие новыми механизмами воздействия на систолическую функцию. Задача будущих исследований – выявить причинные гены и механизмы, лежащие в основе их действия [273].

В другом недавнем исследовании при субгеномном подходе с использованием 50000 полиморфных маркеров 2000 генов, которые потенциально могут быть взаимосвязаны с CCЗ, выявлена ассоциация CH и полиморфного маркера rs1739843, локализованного в интроне гена HSPB7, кодирующего белок сердечного шока (heartshockprotein)[205]. Эти данные воспроизведены в многоцентровом Европейском исследовании [866]. Этот
ген находится в неравновесии по сцеплению с геном, кодирующим калиевые каналы (renalchloridechannel, CLCNKA) [206].

В Европейском исследовании дилатационной КМП выявлены 3 полиморфных маркера, ассоциированных с этой патологией [931]. 2 из них rs10927875 и re2234962 являлись независимыми. Первый, rs10927875, расположен в хромосоме 1р3.13, которая заключает в себе несколько генов, в т.ч. HSPB7. Второй, re2234962, несинонимичный полиморфный маркер (с.T757C, р. С151Р) локализуется в пределах кодирующей последовательности BAG3 (BCL2-ассоциированный атаноген 3) в хромосоме 10q26. Авторы выявили редкий вариант этого гена, который накапливается в семьях с дилатационной КМП. Это подтверждено Norton и соавт [681].

Также в последние годы выявлено большое количество локусов генетической предрасположенности к различным ССЗ [495, 686]: ИБС[100, 814], ИМ[496] и таким факторам риска как АГ[305], дислипидемия[891] и СД[301, 582, 932]. В недавней публикации показана роль изменения ДНК в toll-like рецепторе3 (TLR3) как возможный фактор риска миокардита и дилатационной КМП [388].

Ген растворимой эпоксид гидролазы

На модели инбредных крыс сСН на фоне спонтанной гипертензии провели анализ сцепления и выявили ген, кодирующий растворимую эпоксид гидролазу (Ephx2) как ген, предрасполагающий к развитию систолической СН [273]. Ephx2 действует независимо от гипертензии в ответ на стимуляцию ангиотензином II и повышение постнагрузки в Ephx2-нокаут мышах. Это обеспечивает новую генетическую гипотезу развития систолической СН, которая спонтанно развивается в таких крыс без инфузии ангиотензина II и повышения постнагрузки [273].

GWAS подтвердили, что ген Ephx2 является локусом генетической предрасположенности для систолической СН. Главная функция Ephx2 протеина — вазодилатация путем синтеза эпоксидэйкозатриеновых кислот. Их действие на кардиомиоциты, по-видимому, влияет на функцию ЛЖ. Эти
кислоты стимулируют ангиогенез, защищают клетки от апоптоза и регулируют процессы воспаления[273].

Эпоксид гидролаза (Ephx2) поступает в различные органы: почки, головной мозг, сердечно-сосудистое звено, легкие, не ограничиваясь кардиомиоцитами, чем объясняется плейотропность. Такая многофункциональность часто встречается среди генов. Кардиоренальные взаимосвязи могут объясняться многофункциональностью различных генов, таких как Ephx2, которые функционируют в многочисленных органах, преимущественно в почках, а также влияют на систолическую функцию ЛЖ[273].

Ген вольтажчувствительного калиевого канала (CLCNKA)

Другой пример экспрессируемых в почках генов, влияющих на систолическую функцию сердца, - ген вольтажчувствительного калиевого канала (chloridechannel, voltage-sensitiveKagene, CLCNKA), ассоциированный с систолической CH [273].

Ген Ccl2/хемотаксического белка моноцитов (Mcp-1)

Ген Ccl2/хемотаксического белка моноцитов (monocytechemotacticprotein, Ccl2/Mcp-1) – главный ген-кандидат для ДФ и ГЛЖ. Ccl2/Mcp-1 регулирует миграцию клеток и оказывает многочисленные эффекты. Ccl2 отмечен как область, ассоциированная с болезнью Крона. Блокада Ccl2 улучшает дилатацию и сократимость, фиброз и ремоделирование ЛЖ. Функция Ccl2 опосредована рецептором Ccl2, для которого в одной популяции европейцев была выявлена ассоциация с CH, но в другой она не подтверждилась.

Накопление неблагопрятных компонентов, структурное ремоделирование миофибриллярного коллагенового матрикса воспаление, как полагают, являются основными механизмами, лежащими в основе нарушения вязкоэластичных свойств миокарда и приводящими к ДД. Механически, Ccl2 действует на ДФ без влияния на СФ, вероятно посредством фиброза миокарда и воспаления. Сигнальный путь Ccl2/ CcR2 может являться медиатором апоптоза посредством активации фактора транскрипции [273].
В отличие от генов Ephx2 и Ccl2 других функциональных вариантов локусов количественных признаков, для диастолической функции на моделях животных выявлено не было. Тем не менее, можно предположить некоторые патологические механизмы в зависимости от расположения гена-кандидата [273].

Ген мускаринового холинорецептора 3 (Chrm3)

Локус количественных признаков ДФ/АД С17QTL1 содержит 4 функциональных гена. Среди них известна функция только мускаринового холинорецептора 3 (cholinergicreceptor, muscarinic 3, Chrm3) и его возможное положение в области С17QTL1 [273].

Плейотропный Chrm3 кодирует M3Rи принадлежит к одному из 5 типов мускариновых рецепторов (M1-5R). Хотя роль мускариновых рецепторов в генезе ДФ неизвестна, генChrm3 был ассоциирован с дАЛТационной КМП у человека. Скорее всего, Chrm3 может регулировать диастолическую функцию через нейрональный механизм, как в головном мозге. Доказано, что активация САС, вероятно, связанная с повреждением баро-рецепторов, может вносить вклад в развитие ДД, а также АГ. Учитывая выявление Chrm3 в качестве локуса генетической предрасположенности при СН, вероятно, роль нервной симптомы при этом заболевании не ограничивается симпатической нервной системой [273].

Гены убиквитин-специфическую пептидазу 3 (ubiquitinspecificpeptidase 3, USP3) и leucine-richrepeatsandimmunoglobulin-likedomains 3 (LRIG3)[273]

USP3 и LRIG3, выявленные в GWAS, не прямо идентифицированы, но только связаны с систолической СН. Поэтому необходимо определить, являются ли они прямыми маркерами, регулирующими генами или ответственными генами, регулирующими систолическую функцию. Локус 9р21, который ассоциирован с множеством заболеваний, включая СН, не содержит генов, прямо кодирующих функциональные протеины, но скорее содержит регуляторные гены. Как они могут влиять на СН, неизвестно [273].
Почти все гены, вызывающие редкие моногенные формы СН, кардиомиопатии, кодируют структурные компоненты миокарда. Наоборот, при определении полигенных форм СН, Ephx2, вероятно, Ccl2 и, возможно, Chrm3, по-видимому, первично функционируют вне миокарда. Это сравнение позволяет дифференцировать миокардиальные гены, которые напрямую интракардиально влияют на функцию ЛЖ, от генов, которые непрямо регулируют важные этиологические этапы, определяющие функцию ЛЖ [273].

Казалось бы, что сокращение и расслабление миокарда должны определять миокардиальные гены. Однако экракардиальные гены, такие как Ephx2 и Ccl2, по-видимому, тоже влияют на эти процессы обходным путем, посредством влияния на регуляцию функционирования миокарда. В этот процесс могут быть вовлечены многие промежуточные этапы [273].

Другие гены, ассоциированные с СН

Кроме описанных генов, в моделях мышей с дилатационной КМП, индуцированной кардиоспецифичной оверэкспрессией кальсеквестрина были выявлены гены-модификаторы СН, регулирующие экспрессию генов, прямо контролирующих функцию ЛЖ Hrtfm2, Hrtfm4, Hrtfm5, Hrtfm6 для фракции укорочения/КДД ЛЖ. Также наблюдалось взаимодействие Hrtfm4-6, иллюстрирующее полигенную природу модификации в отношении кальсеквестрин-опосредованной дисфункции ЛЖ. В этих исследованиях функциональные варианты, ответственные за локусы генетической предрасположенности не были выявлены, вероятнее всего, за счет того, что места их расположения содержат слишком много генов, скрининг которых необходимо проводить [273].

Таким образом, в последние годы начали выявлять биологические механизмы, вызывающие полигенную СН, что предлагает сместить акцент с миокард ориентированной концепции моногенных кардиомиопатий на многофункциональную как интра-, так и экракардиальную концепцию. Будущие исследования на моделях животных и людях должны определить
генов, приводящие к развитию диастолической и систолической дисфункции ЛЖ, выяснить механизмы, лежащие в основе влияния локусов количественных признаков на диастолическую и систолическую функции миокарда, прогрессирование и поражение-органов-мишеней при СН и найти новые подходы к ведению пациентов с этим заболеванием[273].

Эпигенетика СН

Поиском генов-кандидатов еще недавно ограничивалось исследованиями генетической предрасположенности к СН. В настоящее время все чаще внимание исследователей обращается к эпигенетике.

Эпигенетика изучает изменения экспрессии генов или фенотипа клетки, вызванные механизмами, не затрагивающими последовательность ДНК. Эпигенетические процессы по механизму можно разделить на 4 главных категории: метилирование ДНК, модификация (ацетилирование и метилирование) гистонов, АТФ-зависимое ремоделирование хроматина и регуляция с помощью некодирующих РНК, в т.ч. микроRNK (miRNAs) [708].

В исследованиях последних 10 лет показано, что эпигенетические процессы играют важную роль в управлениями изменениями экспрессии генов при СН[708].

Ацетилирование гистонов при СН

Основной единицей хроматина является нуклеосома, состоящая из сердцевины (ядра) из 8 гистонов (по 2 гистона Н2А, Н2В, Н3 и Н4), которую обвивает ДНК из 147 нуклеотидов (1,75 оборота). N-терминальные фрагменты этих 8 сердцевинных гистонов выступают над ДНК и подвергаются множеству посттрансляционных модификаций, таких как ацетилирование, метилирование, убиквитилирование, сумоилирование (sumoylation) и фосфорилирование определенных участков. В последние годы было показано, что ацетилирование и метилирование являются важными эпигенетическими механизмами, вовлеченными в регуляцию ключевых
клеточных процессов, таких как репликация и восстановление ДНК[708].

Большинство исследований, связанных с эпигенетикой СН, было сосредоточено на ацетилировании гистонов посредством изучения мышей нокаутных по гену, кодирующему гистондеацетилазу (HDACs). В этих исследованиях показано, что HDAC5 и 9 (2 класса HDACII) обладают антигипертрофической активностью. Мыши, нокаутные по этим генам, показали высокую чувствительность к развитию гипертрофии миокарда и СН в ответ на прогипертрофические стимулы, такие как активация кальциневрина и повышение нагрузки. Это происходит из-за способности этих ферментов связывать и ингибировать Mef2c, фактор транскрипции, который способствует экспрессии прогипертрофических генов. В ответ на прогипертрофические стимулы, 2 стрессиндукируемые киназы — кальций/кальмодулинзависимая протенкиназа (CaMK) и протеинкиназа D (PKD) фосфорилируют HDAC 5 и 9. Фосфорилированные HDAC связывают 14-3-3, чaperон (спровождающий белок), который транспортирует HDACиз ядра в цитоплазму. Это приводит к отделению HDAC от Mef2c, который затем свободно взаимодействует с p300, гистоном ацетилтрансферазы, что способствует транскрипции. Другой представитель класса гистондеацетилаз II – HDAC4. В сердце в физиологических условиях HDAC4 функционирует как репрессор (ингибитор) Mef2 и сывороточного фактора ответа (SRF). Исследования молекулярных механизмов, вовлеченных в регуляцию активности HDAC4 при гипертрофии миокарда, выявили, каким образом окисление цистеина и протеолиз активности протеинкиназы A (PKA) являются двумя новыми регуляторными механизмами этого фермента и, следственно, гипертрофии миокарда. Активность HDAC4 зависит от окисительно-восстановительного состояния: окисление HDAC4 вызывает передвижение HDAC из ядра в цитоплазму и обратно, деингибируя прогипертрофические гены; с другой стороны, редукция Cys-667/Cys-699 ингибирует ядерный экспорт HDAC независимо от состояния его фосфорилирования. Кроме того, PKA вызывает протеолитическое расщепление
HDAC4 для образования N-концевого фрагмента HDAC4, который селективно ингибирует активность Mef2, но не SRF, противодействуя ремоделированию сердца, не влияя на выживаемость кардиомиоцитов[708].

В недавних исследованиях также показано, что HDAC2 (класс IHDAC) вовлечены в патогенез гипертрофии. HDAC2-дефицитные мыши устойчивы к прогипертрофической стимуляции, наоборот, мыши с гиперэкспрессией HDAC2 сверхчувствительны к этим стимулам. Прогипертрофическая активность HDAC2 связана с ее способностью подавлять экспрессию Inpp5f, который кодирует фосфатидилинозитол-3,4,5-трифосфат фосфатазу (PIP3), негативный регулятор прогипертрофии PI3K-Akt-Gsk3β[708].

В целом, эти исследования говорят о том, что разные классы HDAC вовлечены в различные процессы, контролирующие гипертрофию: класс IIHDAC блокирует экспрессию прогипертрофических генов, наоборот HDAC2 (относится к классу IHDAC) участвует в блокировании экспрессии антигипертрофических генов [708].

Роль ацетилирования при СН также подтверждена в исследованиях, показавших, что широкий спектр ингибиторов HDAC, таких как трихостатин А (TSA) и бутират натрия (NaB), способен предотвращать развитие гипертрофии invitro и API-D, ингибитор класса IHDAC, способенуменьшать гипертрофию миокарда у мышей со стенозом аорты[708].

Метилирование ДНК и гистонов при СН

Метилирование ДНК и гистонов при СН исследовано плохо. Недавно было показано, что метилирование гистонов участвует в регуляции гипертрофии миокарда. Кроме того, в 2 публикациях была подтверждена роль метилирования ДНК при кардиомиопатиях[708].

Ремоделирование хроматина при СН

Роль ремоделирования хроматина в регуляции изменений экспрессии генов, лежащих в основе СН, подтверждена недавними исследования-
ми BRG1, АТФ-азной субъединицы BAF (брахма-ассоциированного фактора). Мыши с отсутствием этого белка более устойчивы в прогипертрофическим стимулах (таким как ТАС), чем дикие особи. Кроме того, экспрессия этого протеина была выявлена в сердце у некоторых пациентов с ГКМП с корреляцией между уровнем экспрессии и тяжестью заболевания. Brg1 играет ключевую роль в переходе от фетальных изоформ тяжелых цепей миозина (например, β-МНС или Myh7) к взрослым МНС (α-МНС или Myh6) при гипертрофии миокарда. Brg1 экспрессируется в эмбриональных сердцах, но не в кардиомиоцитах взрослых. Однако, прогипертрофические стимулы индуцируют реэкспрессию этого белка, который затем взаимодействует с эмбриональными партнерами HDAC и PARP, образуя 2 молекулярных комплекса, отвечающих за патологический сдвиг от взрослых к фетальным изоформам МНС: Brg1-PARP-HDAC связывается с промотором α-МНС и подавляет транскрипцию α-МНС, тогда как комплекс Brg1-PARP активирует транскрипцию β-МНС, связываясь с его промотором [708].

МикроРНК (miRNA) — ключевой регулятор при CH

По сравнению с модификацией ДНК и гистонов, роль miRNA при CH была лучше исследована. За последние годы несколько публикаций продемонстрировало ее важную роль в патогенезе CH. Выявлено нарушение экспрессии многих miRNA в животных моделях CH и у людей с кардиологической патологией. Набор miRNA при CH напоминает таковой у сердечной ткани плода; это соответствует идее, что при CH реактируется программа экспрессии фетальных генов. Было предложено, что для каждой патологии сердца имеется специфичный набор miRNA. Действительно, GWAS miRNA продемонстрировали, что при трех разных заболеваниях сердца у людей — аортальном стенозе, дилатационной и ишемической КМП, — имеются 43 из 87 исследованных miRNA, экспрессируемые по-разному при каждом из этих заболеваний [708].

Функциональные исследования, выполненные in vitro и in vivo продемонстрировали ключевую роль miRNA в регуляции изменений экспрессии
генов при СН. Гиперэкспрессия miR-23a, miR-23b, miR-24, miR-195 или miR-214 индуцировала развитие гипертрофии в неонатальных кардиомиоцитах; у трансгенных miR-195 мышей развивалась ДКМП; гиперэкспрессия miR-133 ингибировала кардиальную гипертрофию, тогда как делеция miR-133 способствовала кардиальной гипертрофии invitro и invivo. В общем, эти исследования свидетельствуют о том, что miRNA представляют собой хорошие мишени для терапии и/или диагностики СН [708].

Таким образом, в последние годы показана важная роль эпигенетики в генезе СН. Однако остается много открытых вопросов, например, как эпигеном изменяется под действием окружающей среды (диеты, курения, стрессов и т.п.) [708] и участвуют ли эпигенетические механизмы в поражении органов-мишеней при СН.

Вклад генетики и эпигенетики в прогрессирование фиброза почек

Фиброз почек рассматривается как один из основных патогенетических механизмов прогрессирования ХБП. Фиброз представляет собой патологический механизм рубцевания, который включает накопление активированных фибробластов, избыточное отложение межклеточного матрикса, снижение регенерации эпителия каналцев, снижение количества микрососудов и (чаще всего асептическое) воспаление. Механизмы, определяющие скорость фиброзирования, окончательно не известны[881].

Проект НарМар позволил выявить более 12 миллионов SNP, встречающихся с частотой >1% в общей популяции[881]. С 2005 года более чем 1500 GWAS были опубликованы и несколько исследований были проведены для выявления полиморфных маркеров, предрасполагающих к развитию ХБП. GWAS выявили несколько генов, ассоциированных с хроническим снижением функции почек: немышечная тяжелая цепь миозина 2 (MYH9), уромодулин (UMOD), метенилтетрагидрофолат синтетаза (MTHFS), eyesabsenthomologue 1 (EYA1), transcriptionfactor-7-like 2 (TCF7L2)’.
Однако, за исключением уромодулина, ни один из протеинов, кодируемых этими генами не был связан с прогрессированием ХБП. Кроме того, гены, которые были выявлены в качестве основных факторов развития фиброза почек, такие как ген, кодирующий трансформирующий фактор роста β (TGFβ1), не были повторно выявлены в полногеномных исследованиях (GWAS). Есть ряд объяснений этого расхождения: связь SNP (с частотой 1-10% в общей популяции) с признаками заболеваний, требуются большие выборки. В связи с этим GWAS в области ХБП ориентируются на повышение концентрации креатинина в сыворотке крови, а не на больных с подтвержденной при биопсии нефропатией. Более того, SNP с частотой <1% не оцениваются в этих исследованиях. И наконец, становится очевидным (не только в почках), что большинство SNP мало влияют на функциональную активность гена (в отличие от мутаций) и обнаружение SNP может оказывать лишь незначительное влияние на прогрессирование болезни. В этом отношении становится очевидным, что SNP в промоторах и интронах, которые не оцениваются в большинстве исследований, анализирующих экзоны, могут влиять на функциональную активность генов больше, чем гены, расположенные в кодирующих областях. В общем GWAS еще не выявили полиморфные маркеры, которые вносят вклад в патогенез фиброза почек, но остается надежда, что новый дизайн исследований (анализ пациентов с подтвержденной при биопсии ХБП) и более продвинутые технологии (полное секвенирование генома) помогут выявить генетическую основу предрасположенности в будущем [881].

Можно предположить, что ряд метаболических факторов и факторов окружающей среды может запускать эпигенетические механизмы регуляции экспрессии генов и способствовать развитию СН и поражения органов-мишеней при этом заболевании.

Таким образом, в настоящее время окончательно не известно, какие именно гены и каким образом участвуют в патогенезе СН и поражении органов-мишеней при этом заболевании [164]. Результаты полногеномных ис-
следований выявили ряд генов, предрасполагающих к развитию СН. В связи с этим очевидна необходимость изучения этих генов у больных с СН, в т.ч. их взаимосвязи с патогенетическими механизмами и клинико-лабораторно-инструментальными признаками поражения органов-мишеней.

Таким образом, несмотря на активное изучение хронической сердечной недостаточности, поражение органов-мишеней при этом заболевании представляет собой насущную мультидисциплинарную проблему[461]. Недостаточно изучено поражение органов-мишеней при этом заболевании, его механизмы, предикторы, распространенность. Не разработаны точные и доступные для клинической практики методы, позволяющие осуществ-лять раннюю диагностику поражения органов-мишеней у больных с ХСН [186]. Требуется дальнейшее изучение взаимосвязи поражения органов-мишеней и клинической симптоматики, качества и продолжительности жизни при ХСН. Сравнительных исследований влияния на поражение органов-мишеней различных препаратов из групп, рекомендованных для лечения больных с ХСН, не проводилось. Специфическая органопротективная терапия для данной категории больных в настоящее время не разработана. Учитывая неуклонный рост распространенности ХСН, неблагоприятный прогноз при этом заболевании, изучение поражения органов-мишеней является актуальной задачей.
Глава 2. ХАРАКТЕРИСТИКА БОЛЬНЫХ И МЕТОДЫ ИССЛЕДОВАНИЯ

Характеристика больных, включенных в исследование

С 2004 по 2016 год под нашим наблюдением находилось 242 больных (192 мужчины и 50 женщин) с хронической сердечной недостаточностью (ХСН) I-IV функционального класса (ФК) по классификации Нью-Йоркской ассоциации сердца (NYHA) ишемической и неишемической этиологии.

Больные были направлены сотрудниками ГБУЗ ГКБ №12 ДЗМ и ГБОУ ВПО РНИМУ им. Н.И. Пирогова для обследования и коррекции терапии, а также были приглашены для участия в исследовании на основании анализа документации архивов и электронных баз данных кафедры госпитальной терапии №2 ГБОУ ВПО РНИМУ им. Н.И. Пирогова, кардиодиспансера №1 г. Москвы, НО МФ МСЧ №1 АМО ЗИЛ, с 2006 г. - ГБУЗ ГКБ №12 ДЗМ, с 2015 – ГКБ им. В. М. Буянова ДЗМ.

Критерии включения в исследование: 1) наличие симптомов и признаков СН в покое или при физической нагрузке течение, по крайней мере, 6 месяцев до включения в исследование, 2) наличие признаков систолической или диастолической дисфункции миокарда ЛЖ по данным эхокардиографии [38], 3) возраст старше 18 лет.

Критерии исключения: 1) Острый коронарный синдром или хирургические вмешательства на сердце в течение 6 месяцев до включения в исследование, 2) Гемодинамическая нестабильность, гемодинамически значимые пороки сердца на момент включения в исследование, 2) Первичная патология почек, почечных сосудов, мочевыводящих путей, печени, дыхательной, костной системы, 3) Аутоиммунные заболевания, 4) Онкологические заболевания на момент включения, 5) Острое нарушение мозгового кровообращения в течение 3 месяцев до включения в исследование, 6)
Трансплантация печени, лёгких, костного мозга, 7) Гематологическая патология, в т.ч. миело- и лимфопролиферативные заболевания, миелодиспластический синдром, 8) Нелеченый гипотиреоз или гипертиреоз, первичный гиперпаратиреоз, надпочечниковая недостаточность, сахарный диабет 1 типа, 9) Воспалительные заболевания в стадии обострения, 10) Невозможность больного дать информированное согласие в силу недееспособности невозможности быть комплаентным к процедурам исследования, 11) Беременность, кормление грудью, в случае детородного периода - неприменение адекватной контрацепции.

Основную группу больных составили пациенты с ХСН с низкой ФВ ЛЖ (ФВ ЛЖ по Симпсону <45%, ХСНнФВ), в качестве групп сравнения были включены пациенты с ХСН с сохраненной ФВ ЛЖ (ХСНсФВ) и гипертонической болезнью без симптомов и признаков ХСН и ИБС (ГБ). Общая характеристика больных на момент включения представлена в таблице 2.1.

Таблица 2.1. Общая характеристика больных, включенных в исследование

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ХСНнФВ (n=212)</th>
<th>ХСНсФВ (n=30)</th>
<th>ГБ (n=44)</th>
<th>pχ2/p1-2/p2-3/p1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>М/Ж, %</td>
<td>85,4/14,6</td>
<td>36,7/63,3</td>
<td>59,1/40,9</td>
<td><0,001/<0,001/0,30/0,018</td>
</tr>
<tr>
<td>Возраст, годы</td>
<td>64 (56-70)</td>
<td>63 (61-71)</td>
<td>58 (52-66)</td>
<td>0,007/0,66/0,011/0,022</td>
</tr>
<tr>
<td>I/II/III/IV ФК NYHA, %</td>
<td>3,7/30,2/50</td>
<td>7,7/38,4/5</td>
<td>-</td>
<td>>0,05</td>
</tr>
<tr>
<td>IБС,%</td>
<td>80,9</td>
<td>26,7</td>
<td>-</td>
<td><0,001/0,006/1,0/0,018</td>
</tr>
<tr>
<td>ДКМП,%</td>
<td>9,0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ГС, %</td>
<td>10,1</td>
<td>73,3</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Количество ИМ в анамнезе</td>
<td>1 (1-2)</td>
<td>0(0-0)</td>
<td>-</td>
<td><0,001</td>
</tr>
<tr>
<td>АГ в анамнезе,%</td>
<td>76,5</td>
<td>93</td>
<td>100</td>
<td>0,007/0,39/1,0/0,27</td>
</tr>
<tr>
<td>Длительность АГ в анамнезе, годы</td>
<td>10 (1-20)*</td>
<td>10 (5-15)*</td>
<td>8 (2-10)*</td>
<td>0,45</td>
</tr>
<tr>
<td>Длительность ХСН, годы</td>
<td>3 (2-6)</td>
<td>0,75 (0,5-3)</td>
<td>-</td>
<td>0,08</td>
</tr>
<tr>
<td>САД, мм рт.ст.</td>
<td>115 (100-130)</td>
<td>135 (125-145)</td>
<td>155 (130-175)</td>
<td><0,001/0,22/1,0/<0,001</td>
</tr>
<tr>
<td>ДАД, мм рт.ст.</td>
<td>70 (60-80)</td>
<td>70 (55-85)</td>
<td>90 (80-100)</td>
<td><0,001/1,0/0,14/<0,001</td>
</tr>
<tr>
<td>СР/ФП пара/ФП пост, %⁴</td>
<td>48,4/12,5/3</td>
<td>75/0/25</td>
<td>81,4/18,6/0</td>
<td><0,001/0,31/1,0/<0,001</td>
</tr>
<tr>
<td>СД, %</td>
<td>19,6*</td>
<td>22,2*</td>
<td>25*</td>
<td>0,93</td>
</tr>
<tr>
<td>Индекс массы тела, кг/м²</td>
<td>27,7 (25,2-30,9)*</td>
<td>27,8 (25,1-28,9)*</td>
<td>26,5 (24,6-28,1)*</td>
<td>0,06/1,0/0,66/0,06</td>
</tr>
<tr>
<td>ИКЧ, пачек/лет⁵</td>
<td>9,6 (0-76)</td>
<td>2 (0-10)</td>
<td>-</td>
<td>0,29</td>
</tr>
</tbody>
</table>

¹М – мужчины, Ж – женщины
²Медиана (25-;75-процентил) здесь и далее, если не указан иной способ представления данных
³ДКМП – дилатационная кардиомиопатия, ГС – гипертоническое сердце
⁴СР/ФП пара/ФП пост – синусовый ритм/пароксизмы фибрилляции предсердий в анамнезе/постоянная фибрилляция предсердий.
⁵Результаты представлены как среднее (min, max)

p – Kruskal-Wallistest для сравнения трех независимых групп
p1-2 – Mann-WhitneyUtest для ХСНнФВ и ХСНсФВ
p2-3 - Mann-WhitneyUtest для ХСНсФВ и ГБ
p1-3 - Mann-WhitneyUtest для ХСНнФВ и ГБ

Среди больных с ХСНнФВ преобладали мужчины 85,4%, 14,6% женщин; среди пациентов с ХСНсФВ – женщины 63,3%, мужчин - 36,7%. Достоверных гендерных различий между пациентами с ХСНсФВ и ГБ не было (p=0,3). Большинство пациентов были людьми пожилого возраста (медиана (25- и 75-й процентили) - 61,9 (56-70) лет), больные с ГБ были достоверно моложе больных с ХСН (p=0,011 и 0,022).
Среди пациентов с ХСН преобладали больные со II и III ФК NYHA, достоверных различий по ФК между пациентами с ХСНнФВ и ХСНсФВ не было (p>0,05).

Причинами ХСН у обследованных больных были ИБС, дилатационная кардиомиопатия, гипертоническое сердце IV стадии (по Iriarte M.M. [467]). Верификация этиологии осуществлялась на основании клинико-анамнестических данных и результатов лабораторно-инструментального обследования в соответствии с общепринятыми стандартами диагностики [323, 598, 650, 898]. Самой частой причиной ХСНнФВ была ИБС – 80,9%. Она достоверно чаще встречалась у больных с ХСНнФВ, чем у пациентов с ХСНсФВ (p=0,006).

Инфаркты миокарда в анамнезе чаще были у больных с ХСНнФВ, чем при ХСНсФВ (78,4% и 25% соответственно, p<0,001). У некоторых больных с ХСНсФВ был один инфаркт миокарда в анамнезе, тогда как при ХСНнФВ количество перенесенных инфарктов миокарда варьировало от 1 до 4: 63,8%, 28,8%, 6,7% и 0,7% соответственно. Медиана времени, прошедшего после последнего инфаркта миокарда, составила 4 года (1-8 лет).

АГ в анамнезе была у 76,5% больных с ХСНнФВ, продолжительность ее составляла 10 (0-20) лет, значения максимального систолического АД – 180 (115-200) мм рт.ст., значения максимального диастолического АД – 100 (90-110) мм рт.ст. АГ в анамнезе отмечалась у 93% больных с ХСНсФВ и 100% пациентов с ГБ. Достоверных различий по длительности АГ в анамнезе между пациентами изучаемых групп не выявлено (p=0,45). При этом отмечалась тенденция к большей продолжительности анамнеза сН у больных с ХСНнФВ (p=0,08). У пациентов с ГБ достоверно выше были цифры систолического и диастолического АД во время обследования (p<0,001). Достоверных отличий в цифрах АД между больными с ХСНнФВ и ХСНсФВ не выявлено (p>0,05).

Среди больных сХСНнФВ постоянная (> 1года) форма ФП встречалась у 38,6% (95%ДИ 28,4-47,6) пациентов. У 61,4% (95% ДИ 52,4-71,6)
больных был синусовый ритм при включении, однако у 12,9% больных с ХСНнФВ отмечались пароксизмы ФП в анамнезе (последний зарегистрированный пароксизм был более, чем за 6 месяцев до включения в исследование). У пациентов с ХСН достоверно чаще регистрировалась фибрилляция предсердий (ФП), чем у больных с ГБ (<0,001). При ХСНнФВ частота пароксизмальной формы ФП в анамнезе и постоянной ФП была выше, чем при ХСНсФВ, но различия не были достоверными (р>0,05). У шестипациентов с ХСНнФВи одного пациента с ХСНсФВ на момент включения был установлен постоянный элекрокардиостимулятор в связи с синдромом слабости синусового узла (5 – эпизодами асистолии при ХМЭКГ, 1 - приступами Морганьи-Эдамса-Стокса, 1 – симптоматической брадикардией). У 1го из них через год после установки ПЭКС развился пароксизм желудочной тахикардии, в связи с чем ПЭКС заменен на кардиовертер-дефибриллятор. Еще 1–й пациентке с ХСНнФВ в связи с пароксизмами неустойчивой желудочной тахикардии также установлен кардиовертер-дефибриллятор.

Одному больному за 30 лет до включения в исследование было произведено протезирование аортального клапана шаровым протезом по поводу инфекционного эндокардита, за 9 лет до включения перенес Q-инфаркт миокарда образованием хронической аневризмы ЛЖ, его вторичной дилатацией и развитием ХСНнФВ. Одной пациентке с ХСНсФВ за 4 года до включения в исследование проведено протезирование AK по поводу недостаточности II степени, на фоне неадекватной антикоагулянтной терапии и тромбоза протеза – развитие Q-инфаркта миокарда, подтвержденного лабораторно-инструментальными методами обследования, при интактных коронарных коронарных артериях по данным коронароангиографии. Одному больному с ХСНФВ в 1997 году произведено протезирование аневризмы брюшного отдела аорты вместе с маммарокоронарным шунтированием. Один пациент дважды за 8 лет до включения в исследо-
ние перенес клиническую смерть во время острого инфаркта миокарда, осложненного субаортальным разрывом межжелудочковой перегородки, пластике постинфарктного ДМЖП заплатой из ксеноперикарда с одновременным МКШ (ПМЖВ), АКШ (ПКА) и пластикой трикуспидального клапана по де Вега, пластикой аневризмы ЛЖ. Один пациент за 23 года до включения в исследование оперирован по поводу открытого артериального протока. В целом 11,8% пациентов с ХСНнФВ перенесли коронарную ангиопластику со стентированием, 5,1% аортокоронарное/маммарокоронарное шунтирование за ≥ 6 месяцев до включения в исследование. Среди пациентов с ХСНсФВ только один перенес коронарную ангиопластику со стентированием, АКШ не было. Двум пациентам с ХСНнФВ после проведения коронароангиографии перед включением в наше исследование было предложено аортокоронарное шунтирование, от которого пациенты воздержались, двум пациентам по результатам коронароангиографии проведение оперативного лечения признано нецелесообразным.

Сахарный диабет (СД) диагностировался в соответствии с современными рекомендациями [791]. Достоверных различий по частоте встречаемости этой патологии в группах больных с ХСНнФВ, ХСНсФВ и ГБ не было (р=0,93). Также достоверно не различались длительность СД и метод лечения: диета, таблеттированная сахароснижающая терапия или инсулинотерапия (р<0,05). Индекс массы тела (ИМТ) рассчитывали по формуле[91]:

ИМТ (кг/м²)=Вес (кг)/Рост²(м).

Согласно рекомендациям рабочей группы экспертов ВОЗ, нормальной массой тела считали ИМТ 20,0-24,9 кг/м², избыточной массой тела - ИМТ 25,0-29,9 кг/м², ожирением I степени - 30,0-34,9 кг/м², ожирением II степени - 35,0-39,9 кг/м², ожирением III степени - ≥40,0 кг/м²[91]. При ХСНнФВ дефицит массы тела отмечался у 1,2% больных, нормальная масса тела была у 21,3%, избыточная - у 50,3%, ожирение I степени – у 20,1%, ожирение II степени – у 6,5% обследованных, ожирение III степени – у
0,6%. При ХСНсФВ дефицит массы тела отмечался у 3,5% больных, нормальная масса тела была у 27,5%, избыточная - у 51,7%, ожирение I степени - у 13,8%, ожирение II степени - у 3,5% обследованных. При ГБ дефицита массы тела и III степени ожирения не было, нормальная масса тела была у 34,9%, избыточная - у 51,2%, ожирение I степени - у 9,3%, ожирение II степени - у 4,6% обследованных. Достоверных различий указанных групп по выраженности ожирения не было (p>0,05).

Абдоминальный тип ожирения диагностировали при окружности талии >94 см у мужчин, >80 см у женщин[79]. У больных с ХСНнФВ этот тип ожирения был выявлен у 68%. Из них 92,2% составили мужчины, 7,8% - женщины.

Табакокурение при включении в исследование отмечали 36,5% больных с ХСНнФВ; 16,7% больных с ХСНсФВ и 66,7% больных с ГБ. Курение в анамнезе отмечали 54,5% больных с ХСНнФВ; 16,78% больных с ХСНсФВ и 66,7% больных с ГБ. Количество больных, у которых отмечалось курение в анамнезе, было достоверно выше среди пациентов с ХСНнФВ (p<0,001). Среди них стаж курения составил 30 (20-38) лет. Количество выкуриваемых в сутки сигарет у них также было достоверно выше (p=0,013).

Злоупотребление алкоголем достоверно чаще выявлялось при ХСНнФВ. Среди этих пациентов 24% не скрывали злоупотребления алкоголем, причем принимали алкоголь в течение 4 (1-15) дней в месяц.

Проведенная работа представляет собой открытое проспективное исследование, проводилась с письменного добровольного согласия пациента, была одобрена Этическим комитетом ГБОУ ВПО РНИИ им. Н.И. Пирогова МЗ РФ. Исследование состояло из следующих этапов(таблица2.2):

1) первичного обследования всех больных (n=286),
2) повторного обследования больных с ХСНнФВ, исходно находившихся в состоянии декомпенсации, после перехода в состояние компенсации (n=57),
3) повторного (через 3-12 месяцев после первичного) обследования больных с ХСНнФВ (n=100),

4) наблюдения за пациентами с оценкой выраженности клинической симптоматики, биохимическим мониторингом, оценкой функционального состояния почек, развития осложнений ХСН, сопутствующей патологии, потребности в хирургическом лечении, коррекцией терапии (n=94),

5) оценки прогноза перед окончанием исследования (n=163).

Таблица 2.2. Протокол исследования

<table>
<thead>
<tr>
<th>Группы</th>
<th>ХСНнФВ</th>
<th>При поступлении (2-4 сутки)</th>
<th>При выписке* (8-29 сутки)</th>
<th>По- вторное</th>
<th>Перед завершением исследования</th>
<th>ХС</th>
<th>Нс</th>
<th>ФВ *</th>
<th>ГБ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антропометрия</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стандартное клинико-лабораторное обследование, СКФ, альбуминурия, печеночные ферменты, С-РБ</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ШОКС</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПТГ, 25OHVitD, маркеры костного метаболизма, NT-pro-BNP</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЭХОКГ + ТД</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ХМ-ЭКГ</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>СМАД</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Проба с ФН: темп- ми и/или 6-минутный тест</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Опросники выраженности симптоматики и качества жизни</td>
<td>3+</td>
<td>3+</td>
<td>3+</td>
<td>-</td>
<td>1+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Опросник для оценки факторов риска и анамнеза</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УЗИ почек, ДСПА</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
УЗИ БП | + | - | - | - | - | - |
Денситометрия | - | + | - | - | - | - |
Бодиплетизмография | - | + | - | - | - | - |
Осмотр глазного дна | - | + | - | - | + | + |
Генетический анализ | - | + | - | - | - | - |
Оценка прогноза | - | - | - | + | - | - |

* - при отсутствии признаков декомпенсации ХСН повторное обследование перед выпиской не проводилось
** - обследование проводилось в состоянии компенсации

Все пациенты получали диету с пониженным содержанием натрия и общепринятую лекарственную терапию, основанную на современных рекомендациях по лечению больных с ХСН[39]. Индивидуальные для каждого пациента дозы препаратов были тщательно оттитрованы с начальных до максимально переносимых или целевых. У компенсированных больных индивидуальные дозы препаратов были подобраны до первичного обследования, у декомпенсированных — титрация доз лекарственных препаратов, начатая на догоспитальном этапе, продолжалась во время госпитализации. Индивидуальная доза диуретиков для ежедневного приема подбиралась так, чтобы на фоне нее суточный диурез составлял +150+200 мл/сут, состояние больного оставалось стабильным и не появлялись признаки задержки жидкости. Обследование компенсированных больных и повторное обследование декомпенсированных больных с ХСНиФВ проводилось на фоне приема диуретиков в этой индивидуальной дозе. У23%этих больныхI-II ФК NYHA потребности в приеме мочегонных не было.

После тщательной титрации дозы мочегонных препаратов определяли расчетную суммарную дозу диуретиков (СДД), требующуюся для поддерживающей терапии. В соответствии со способностью отдельных диуретиков выводить Na⁺, 25 мг гипотиазида мы оценивали как 1; 40 мг фуросемида, 50 мг урегита и 10 мг торасемида - как 2, 250 мг диакарба - как 0,5; 25 мг верошпирона и триамтерена - как 0,33[6]. При комбинированной ди-
уретической терапии полученные коэффициенты складывали. Кроме того, потребность в поддерживающей терапии диуретиками ранжировали от 0 до 2, за 0 принимали отсутствие потребности в поддерживающей диуретической терапии, за 1 – потребность в приеме <80 мг фurosемида или 10 мгторасемида или 50 мг урегита, за 2 – большую потребность в диуретической терапии.

Методы исследования

Больным проводили стандартное клинико-лабораторно-инструментальное обследование, рекомендованное для больных ХСН, в т.ч. общий и биохимический анализ крови и мочи, ЭКГ в 12-отведениях, трансторакальную ЭХОкт, рентгенографию грудной клетки, оценку функционального состояния щитовидной железы[38], и ряд дополнительных обследований.

Комплексное лабораторное обследование

Для оценки состояния органов-мишеней и метаболических изменений, определения маркеров сердечно-сосудистого риска, воспаления, оксидативного стресса, повреждения почек, костного метаболизма, углеводного, кальций-фосфорного обмена больным проводили комплексное лабораторное обследование (Иммуноферментный анализатор HUMAREADERHS, HUMAN GmbH, Германия; Универсальный биохимический анализатор DimensionRxL, Siemens Healthcare Diagnostics, США-Германия) с определением концентраций мочевины, креатинина, K⁺, Na⁺, Cl⁻, общего Са, неорганического фосфора (фосфатов в моче), глюкозы, а также мочевой кислоты в сыворотке крови и моче, собранной на фоне обычного питьевого режима в течение тех суток, когда проводилось исследование крови [86]. Для определения концентрации этих веществ в 1 литре мочи значение величины их суточной экскреции делили на суточный диурез. Анализы производились непосредственно после доставки материала в соответствии с общепринятыми требованиями по стандартным мето-
дикам на базе клинико-диагностической лаборатории НО МФ МСЧ №1 АМО ЗИЛ, с 2006 г. - ГБУЗ ГКБ №12 ДЗМ, с 2015 – ГКБ им.В.М.Буянова ДЗМ (Таблица 2.3).

Таблица 2.3. Методики определения концентрации различных веществ в крови и суточной моче.

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Метод определения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мочевина</td>
<td>Ферментативно-колориметрический (модифицированная реакция Berthelot)</td>
</tr>
<tr>
<td>Креатинин</td>
<td>Фотометрический колориметрический метод оценки кинетики реакции с пикриновой кислотой в щелочной среде (по Jaffe)</td>
</tr>
<tr>
<td>Калий</td>
<td>Непрямая потенциометрия</td>
</tr>
<tr>
<td>Натрий</td>
<td>Непрямая потенциометрия</td>
</tr>
<tr>
<td>Хлориды</td>
<td>Непрямая потенциометрия</td>
</tr>
<tr>
<td>Кальций общий</td>
<td>Фотометрический (с о-крезолфталеинкомплексоном)</td>
</tr>
<tr>
<td>Фосфор в сыворотке, фосфаты в моче</td>
<td>Фотометрический (измерение в ультрафиолетовом диапазоне)</td>
</tr>
<tr>
<td>Мочевая кислота</td>
<td>Ферментативно-колориметрический</td>
</tr>
<tr>
<td>Глюкоза</td>
<td>Ферментативно-колориметрический</td>
</tr>
</tbody>
</table>

При оценке динамики уровня креатинина в сыворотке крови клинически значимой считалось изменение концентрации ≥10 и 26,5мкмоль/л.

Для выявления лабораторных факторов риска и признаков поражения органов-мишеней при ХСН, кроме перечисленных показателей, определялись сывороточные концентрации общего белка колориметрическим (биуретовая реакция), альбумина – колориметрическим (реакция с бромокрезоловым зеленым), железа – колориметрическим (с ферроzinным). Концентрация фибриногена в плазме крови определялась модифицированным методом Clauss.

Для выявления поражения печени как органа-мишени проведена оценка функционального ее состояния с выявлением маркеров цитолити-
ческого (↑АЛТ, АСТ, ЛДГ общей, далее ЛДГ), холестатического (↑ЩФ, ГГТП) и синдрома малой печеночно-клеточной недостаточности (нарушения коагулограммы без предшествующей антикоагулянтной терапии, гипоальбуминемия и гипопротеинемия).

За нормальный диапазон значений этих показателей принимали нормы локальной лаборатории, в которых проводились анализы. Для АЛТ 0-32/л, АСТ 5-34/л, для ЛДГ 225-450 ЕД/л, ЩФ 64-306 ЕД/л, ГГТП 11-61 ЕД/л, билирубина общего 1,7-20,5 мкмоль/л, билирубина прямого 0,86-5,0 мкмоль/л, альбумина 35-55 г/л, общего бека 65-85 г/л.

Из показателей липидного обмена определяли концентрации в сыворотке крови холестерина общего (ОХС), липопротеинов высокой плотности (ХС ЛПВП), липопротеинов низкой плотности (ХС ЛПНП), липопротеинов очень низкой плотности (ХС ЛПОНП), триглицеридов (ТГ) – ферментативно-колориметрическим (с липид-очищающим фактором). Содержание общего ХС ниже 5,2 ммоль/л считали нормальным, уровень общего ХС 5,3–6,5 ммоль/л - пограничным, от 6,6 до 7,7 ммоль/л — повышенным, а выше 7,8 ммоль/л — высоким. Для ХС ЛПНП нормальным уровне считали менее 130 мг/дл (менее 3,4 ммоль/л), пограничным — 130–159 мг/дл (3,4–4,1 ммоль/л). Нормальным уровнем триглицеридов (ТГ) считали его значения меньше 1,7 ммоль/л или 130 мг/дл.

Известно, что физиологически активным является ионизированный кальций сыворотки, составляющий 40-50% от общего кальция, но измерения его в клинической практике малодоступно, обладает высоким соотношением цена/эффективность и не рекомендуется KDIGOв настоящее время для клинического применения[99].Неионизированный кальций циркулирует в виде солей цитрата, бикарбоната и фосфата, связанных с альбумином. При снижении альбумина увеличивается количество ионизированного кальция и концентрация общего кальция может не позволить выявить функциональную гиперкальциемию. Для исключения этого, производилась
коррекция общего уровня кальция в сыворотке крови по уровню альбуминна с помощью формулы[21]:

$$Ca_{корр} = Ca_{общ} + 0,8 \times (4 - S_{альб}),$$

где $Ca_{корр}$ – скорректированный общий кальций, мг/дл, $Ca_{общ}$ – измеренный общий кальций, мг/дл, $S_{альб}$ – альбумин сыворотки крови, г/дл.

Или

$$Ca_{корр} = Ca_{общ} + 0,2 \times (40 - S_{альб}),$$

где $Ca_{корр}$ – скорректированный общий кальций, ммоль/л, $Ca_{общ}$ – измеренный общий кальций, ммоль/л, $S_{альб}$ – альбумин сыворотки крови, г/л [21, 99].

Согласно Клиническим практическим рекомендациям KDIGO по метаболизму кости и патологии скелета при хронических заболеваниях почек, нормальным для взрослых считается диапазон сывороточных концентраций общего кальция от 8,5 до 10,5 мг/дл (2,1-2,6 ммоль/л)[99]. Снижение концентрации скорректированного общего кальция <8,5 мг/дл (2,1 ммоль/л) расценивали как гипокальциемию, повышение >10,5 мг/дл (2,6 ммоль/л) – как гиперкальциемию.

Согласно KDIGO, нормальным для взрослых считается диапазон сывороточных концентраций от 2,5-4,5 мг/дл (0,81-1,45 ммоль/л)[99]/ Снижение концентрации фосфора в сыворотке крови <0,81 ммоль/л считали гипофосфатемией, повышение >1,45 ммоль/л – гиперфосфатемией.

Для расчета кальций-фосфорного произведения сыворотки крови ($Ca*P$, мг²/дл²) умножали значение концентрации неорганического фосфора (мг/дл) на значение концентрации кальция (мг/дл). Чтобы перевести значение концентрации общего кальция, выраженное в ммоль/л, в мг/дл (мг%), умножали его на 4; чтобы перевести значение концентрации неорганического фосфора из ммоль/л в мг/дл, умножали на 3,1[94].

Расчет скорости клубочковой фильтрации

207
Скорость клубочковой фильтрации (СКФ) считается наилучшим показателем функционального состояния почек. Расчет СКФ проводился по формулам Кокрофта-Голта, 6-, 4-компонентным формулам MDRD (MDRD1, MDRD2)\[^{[22, 55, 564, 586, 587, 662, 687]}\], упрощенной формуле MDRD (MDRDs) и разработанная и проверенная в последние годы во многих эпидемиологических исследованиях формула CKD-EPI\[^{[14]}\]:

1. Клиренс креатинина (Скр) по Кокрофту-Голту:
 \[С_{кр} \times BSA/1,73m^2 \]
 a. Для мужчин: \[С_{кр} = [(140 – возр) * вес] / [S_{кр} * 72] \]
 b. Для женщин: \[С_{кр} = ((140 – возр) * вес) / [S_{кр} * 72]) * 0,85 \]

2. MDRD 1 («6-компонентная формула» или оригинальная формула MDRD):
 \[СКФ = 170 * [S_{кр}]^{0,999} *[возр]^{0,176} *[0,762 у женщ] * [AMK]^{-0,170} *[S_{альб}]^{0,318} \]

3. MDRD2 («4-компонентная формула» или сокращенная формула MDRD):
 \[СКФ = 186 * [S_{кр}]^{-1,154} *[возр]^{-0,203} *[0,742 у женщ], \]

4. MDRDs (упрощенная формула MDRD):
 \[СКФ = 175 * [S_{кр}]^{-1,154} *[возр]^{-0,203} *[0,742 у женщ] \]

Для значений концентрации креатинина в сыворотке крови, выраженных в мкмоль/л:

5. CKD-EPI:
 \[СКФ = 141 * min(S_{кр}/0,9,1)^{0,411} * max(S_{кр}/0,9,1)^{1,209} \]
 \[*0,993^{возраст} \]
 Для мужчин: \[СКФ = 141 * min(S_{кр}/0,7,1)^{0,329} * max(S_{кр}/0,7,1)^{1,209} \]
 \[*0,993^{возраст}, \]
где СКФ – скорость клубочковой фильтрации, мл/мин/1,73 м²; Скр – клиренс креатинина, мл/мин; Sкр – концентрация креатинина в сыворотке крови, мг/дл; AMK – значение азота мочевины крови, мг/дл (для его расчета концентрацию мочевины в сыворотке крови умножали на 2,8); Sальб – концентрация альбумина в сыворотке крови, г/л; BSA – площадь поверхности тела, м²; возр – возраст, годы; женщин – женщин; вес – вес, кг.

Для расчета BSA использовали формулу Geban и George [86, 94]:

$$BSA (м^2) = 0,0235 \times \text{вес (кг)}^{0,51456} \times \text{рост (см)}^{0,42246}.$$

Учитывая то, что клубочковая фильтрация возрастает при инфузии или избыточном употреблении жидкостей, питании высокобелковой пищей и снижается под влиянием тяжелой физической нагрузки и отрицательных эмоций [61], для правильной оценки этого показателя влияния этих факторов избегали.

Стадию ХБП диагностировали в соответствии с современными рекомендациями [67]. 1-ю стадию - при наличии маркеров почечного повреждения с нормальной или увеличенной СКФ ≥ 90 мл/мин/1,73 м². 2-ю стадию – при наличии маркеров почечного повреждения со снижением СКФ до 60-89 мл/мин/1,73 м². За и 3б стадии – при снижении СКФ до 45-59 и 30-44 мл/мин/1,73 м² соответственно. 4-ю и 5-ю стадии – при снижении СКФ до 15-29 и <15 мл/мин/1,73 м² соответственно [94].

Определение экскреции альбумина с мочой

Количественное определение альбумина производили в первой утренней порции мочи с помощью иммуноферментного анализа (ИФА, тест UBIMAGIWEL™Micro-AlbuminQuantitative[96]) и в суточной моче с помощью иммунотурбидиметрического анализа (ИТДА, Orgentec 416-4D)[96].

Отношение альбумин/креатинин (мг/г) рассчитывали делением концентрации альбумина (мг/л) на содержание креатинина в утренней моче
(г/л), равное произведению концентрации креатинина в моче (ммоль/л) и молярной массы креатинина (М=149,2 г/моль).

Оценку полученных результатов производили в соответствии с индексом альбуминурии [66]:
A0 - оптимальная альбуминурия: <10 мг/сут, или мг/г креатинина;
A1 - повышенная, ранее называвшаяся высокая нормальная, альбуминурия: 10-29 мг/сут, или мг/г креатинина;
A2 - высокая, ранее называвшаяся микроальбуминурией: 30-299 мг/сут, или мг/г креатинина;
A3 - очень высокая, ранее называвшаяся макроальбуминурия/протеинурия: 300-1999 мг/сут, или мг/г креатинина;
A4 - нефротическая: ≥2000 мг/сут, или мг/г креатинина[44, 67].

Оценка активности ренин-ангиотензин-альдостероновой системы

Активность ренин-ангиотензин-альдостероновой системы (РААС) оценивалась по показателю, равному отношению концентрации калия в моче к сумме концентраций калия и натрия в моче, выраженному в процентах:

\[\text{U}_{\text{K}} \times 100\% / (\text{U}_{\text{K}} + \text{U}_{\text{Na}}) \].

Для активации РААС характерно снижение экскреции Na\(^+\) и увеличение экскреции K\(^+\), что приводит к повышению значений этого показателя выше 60%[31, 265].

Определение концентрации NT-proBNP, тропонина, C-реактивного белка, уровня 25гидроксивитамина D, интактного паратиреоидного гормона, кальцитонина, остеокальцина, остеопротегерина, C-концевого телопептида коллагена I типа в сыворотке крови

Образцы крови для исследования уровня NT-proBNP, интактного паратиреоидного гормона (ПТГ), 25гидроксивитамина D, кальцитонина, остеокальцина, остеопротегерина, C-концевого телопептида коллагена I типа забирались из локтевой вены. Кровь помещалась в вакуумные пробирки и центрифугировалась в течение 15 минут при скорости 4000
об/мин. Полученные образцы сыворотки замораживались при температуре -80°С. Определение концентрации NT-proBNP, уровня 25-гидроксивитамина D, интактного паратиреоидного гормона, кальцитонина, остеокальцина, остеопротегерина, C-концевого телопептида кollагена I типа в сыворотке крови проводилось с помощью разновидностей иммуноферментного анализа (аппарат ИФА HUMAREADERHS, HUMANAGmbH, Германия, Таблица 2.4).

Таблица 2.4. Особенности определения концентрации различных веществ NT-proBNP, тропонина, C-реактивного белка, уровня 25-гидроксивитамина D, интактного паратиреоидного гормона, кальцитонина, остеокальцина, остеопротегерина, C-концевого телопептида кollагена I типа в сыворотке крови.

<table>
<thead>
<tr>
<th>Вещество</th>
<th>Метод определения</th>
<th>Фирма-производитель набора (страна)</th>
<th>Нормальный диапазон</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT-proBNP</td>
<td>Конкурентный иммуноферментный</td>
<td>Biomedica (Словакия)</td>
<td><150 фмоль/мл</td>
</tr>
<tr>
<td>Тропонин I</td>
<td>Ферментсвязанный флуоресцентный</td>
<td>Biomerieux (Франция)</td>
<td>0,01 мкг/л</td>
</tr>
<tr>
<td>C-реактивный белок</td>
<td>Иммунотурбидиметрический</td>
<td>DiaSys (Германия)</td>
<td>0,1-5,0 мг/л</td>
</tr>
<tr>
<td>Интактный паратгормон (1-84)</td>
<td>Ферментно-усиленный «двух-стадийный» сэндвич-тип иммуноанализа</td>
<td>DSL (США)</td>
<td>16-62 пг/мл</td>
</tr>
<tr>
<td>25-гидроксивитамин D</td>
<td>Иммуноферментный</td>
<td>IDS (Румыния)</td>
<td>47,7-144 нмоль/л</td>
</tr>
<tr>
<td>Кальцитонин</td>
<td>ELISA</td>
<td>DRG (США)</td>
<td>0,8-3,11 пг/мл</td>
</tr>
<tr>
<td>Маркер</td>
<td>Метод</td>
<td>Поставщик</td>
<td>Женщины в менопаузе</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Остеокальцин</td>
<td>Иммуноферментный</td>
<td>Nordic Bioscience (Дания)</td>
<td>8,4-33,9 нг/мл</td>
</tr>
<tr>
<td>Остеопротегерин</td>
<td>ELISA</td>
<td>Bender Medsystems (США)</td>
<td>0,112-0,738 нг/мл</td>
</tr>
<tr>
<td>С-концевой телопептид</td>
<td>ELISA</td>
<td>Nordic Bioscience (Дания)</td>
<td>0,112-0,738 нг/мл</td>
</tr>
</tbody>
</table>

Концентрацию NT-proBNP определяли методом конкурентного иммуноферментного анализа. При этом использовались иммуноферментные наборы для количественного определения NT-proBNP в биологических жидкостях фирмы Biomedica (Словакия). Результаты измерений выражались в фмоль/мл. Верхней границей нормы NT-proBNP считалась концентрация 150 фмоль/мл.

Концентрацию тропонина определяли методом ферментсвязанного флуоресцентного анализа. При этом использовались наборы для количественного определения тропонина в сыворотке или плазме крови фирмы-
производителя Biomerieux (Франция). Результаты измерений выражались в мкг/л. Верхней границей нормы тропонина считалась концентрация 0,01 мкг/л.

Концентрацию C-реактивного белка определяли иммуноферментным методом. При этом использовались наборы для количественного определения C-реактивного белка в сыворотке или плазме крови фирмы-производителя DiA Sys (Германия). Результаты измерений выражались в мг/л. Диапазоном нормальных значений для C-реактивного белка считались концентрации 0,1-5,0 мг/л.

Концентрацию 25-гидроксивитамина D определяли иммуноферментным методом. При этом использовались наборы IDS OCTEIA для количественного определения 25-гидроксивитамина D в сыворотке или плазме крови фирмы-производителя IDS (Румыния). Результаты измерений выражались в нмоль/л. Диапазоном нормальных значений для 25-гидроксивитамина D считались концентрации 47,7-144 нмоль/л. Снижением уровня витамина D считали его концентрации ниже 47,7 нмоль/л. При анализе результатов также использованную в ряде исследований и в Рекомендациях общества Эндокринологов градации уровней 25-гидроксивитамина D в сыворотке крови (Таблица 2.5):

Таблица 2.5. Интерпретация уровня витамина D.
Оценка уровня витамина D

<table>
<thead>
<tr>
<th>Концентрация 25-гидроксивитамина D в сыворотке крови, нмоль/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>[747, 989]</td>
</tr>
</tbody>
</table>

Дефицит витамина D	0-25	<50
Недостаточность витамина D	>25-50	52,5-72,5
Гиповитаминоз (снижение концентрации) витамина D	50-70	
Норма витамина D	>70-250	
Гипервитаминоз (токсичность) витамина D	>250	

Концентрацию кальцитонина определяли методом ELISA (Enzyme-LinkedImmunosorbentAssay) с помощью набора DRGCalcitoninELISA (EIA-3648) фирма-производитель DRG (США). Результаты измерений выражались в пг/мл. Диапазоном нормальных значений считались концентрации 0,8-3,11 пг/мл.

Концентрацию остеокальцина определяли методом иммуноферментного анализа. При этом использовались тест-системы N-MID для количественного определения остеокальцина в сыворотке или плазме крови фирмы-производителя NordicBioscience (Дания). Результаты измерений выражались в нг/мл. Диапазоном нормальных значений считались концентрации 8,4-33,9 нг/мл у женщин в пременопаузе, 12,8-55 нг/мл у женщин в постменопаузе, 9,6-40,8 нг/мл у мужчин.

Концентрацию остеопротерегерина определяли методом ELISA (Enzyme-LinkedImmunosorbentAssay) с помощью набора HumanOsteoprotegerinInstantELISA для количественного определения остеопротегерина в сыворотке или плазме крови фирмы-производителя BenderMedsystems (США). Результаты измерений выражались в пг/мл. Диапазон нормальных значений в инструкции к набору не приведен.

Концентрацию C-концевого телопептида коллагена I типа определяли методом ELISA (Enzyme-LinkedImmunosorbentAssay) с помощью тест
системы A/SSerumCrossLapsELISA для количественного определения Сконцевых телопептидов, образующихся при деградации коллагена I типа, в сыворотке или плазме крови фирмы-производителя NordicBioscience (Дания). Результаты измерений выражались в нг/мл. Диапазоном нормальных значений считались концентрации 0,112-0,738 нг/мл у женщин в пременопаузе, 0,142-1,351 нг/мл у женщин в постменопаузе, 0,115-0,748 нг/мл у мужчин.

Определение индекса MELD-XI

С 2002 года при решении вопроса о трансплантации печени в США применяется индекс MELD (ModelforEnd-StageLiverDisease), высокие значения которого предсказывают вероятность смерти больных с циррозом печени в течение 90 дней [423]:
MELD=3,58 Ln(Билирубин)+9,57 Ln(Креатинин)+11,2 Ln(МНО)+6,43 Э,

Для пациентов, получающих антикоагулянтную терапию, приводящую к повышению МНО, разработан индекс MELD-XI (MELDбезМНО) [423]:
MELD-XI=5,11 Ln(Билирубин)+11,76 Ln(Креатинин)+9,44.
Мы использовали его для выявления его клинико-диагностической и прогностической ценности у больных с ХСН.

Эхокардиографическое исследование

Для оценки структуры и функции сердца проводилось эхокардиографическое исследование (ЭХОкт): одномерное (М-режим), двумерное (В-режим) и допплеровское, – на аппарате Sequoia-512 (Acuson, USA) фазовым датчиком с частотой 2,5-3,5 MHz синхронизированно с регистрацией ЭКГ [59, 213].
В соответствии с общепринятым протоколом, в М-режиме измеряли размеры всех полостей и толщину стенок сердца[59, 82].

Масса миокарда ЛЖ рассчитывалась по формуле Devereux[16]:
\[\text{ММЛЖ} = 1.04 \times (\text{Tмжп} + \text{Tзслж} + \text{КДРлж})^3 / \text{КДРлж}^3 - 13.6, \]

При этом толщина эндокарда включалась в КДР и не включалась в толщину стенок ЛЖ, согласно Пенсильванскому соглашению[16]. Индексы массы миокарда рассчитывали как отношение массы миокарда ЛЖ к площади поверхности тела (ИММ/BSA). Гипертрофия миокарда ЛЖ диагностировалась у больных с ИММ/BSA≥115 г/м² у мужчин и ≥95 г/м² у женщин[598]. Относительную толщину стенки ЛЖ (ОТС) рассчитывали как:
\[\text{ОТС} = (\text{Tмжп} + \text{Tзс}) / 2 \times \text{КДРлж}. \]

При симметричной гипертрофии миокарда с ОТС≤0,45 диагностировали эхокардиографический ее тип, при ОТС>0,45 – концентрический [59, 82].

В В-режиме определяли конечный диастолический (КДО), конечный систолический объемы (КСО) и фракцию выброса ЛЖ по методу дисков в двух взаимно перпендикулярных плоскостях (по модифицированному алгоритму Симпсона), а также диаметр выносящего тракта ЛЖ (LVOT)[81].

В режиме импульсно-волновой допплерографии производили запись спектра скоростей кровотока на уровне выносящего тракта ЛЖ. Автоматически с помощью компьютерной системы рассчитывался ударный объем ЛЖ как произведение интеграла линейной скорости кровотока в выходном отделе ЛЖ (VTI_{LVOT}) и площади поперечного сечения LVOT (S_{LVOT}), а также сердечный выброс ЛЖ как произведение ударного объема ЛЖ и ЧСС. Для расчетов использовались средние значения VTI_{LVOT} от 10 последовательных сердечных циклов. Для сравнения показателей насосной функции сердца у людей различной массы тела и роста, мы получали от-
ношения ударного объема и сердечного выброса ЛЖ к площади поверхности тела (BSA) - ударный (УИ) и сердечный индексы (СИ) ЛЖ[59, 82].

Диастолическую функцию левого желудочка оценивали с помощью импульсно-волнового, постоянно-волнового и тканевого допплеровского исследования. Определяли максимальную скорость раннего (пика Е) и позднего (пика А) диастолического наполнения, отношение Е/А, время замедления кровотока раннего диастолического наполнения левого желудочка (DT), которое является временным интервалом, измеряемым от вершины пика Е до пересечения нисходящей части спектра раннего трансмитрального кровотока с изолинией, и при одновременной записи аортального и трансмитрального кровотока в постоянно-волновом режиме время изоволюмического расслабления левого желудочка (IVRT) — интервал от момента окончания аортального до начала трансмитрального кровотока. IVRT рассчитывается с помощью. Также определяли скорость движения фиброзного кольца митрального клапана в раннюю диастолу (Em) и оценивали отношение Е/Em (комбинированный индекс Е/E’, или Е/Ea). Кроме того, определяли спектр кровотока в легочных венах, в т.ч. скорость и продолжительность диастолического ретроградного потока (PVa). [59, 82]. Тип диастолической дисфункции определяли в соответствии с современными рекомендациями (Таблица 2.6 Приложения).

Таблица 2.6 Приложения

Выраженность кальциноза клапанов сердца оценивалась в соответствии с полуколичественной шкалой (Таблица 2.7) [21]. Кальциноз восходящего отдела аорты оценивался следующим образом: 0- норма, 1 – уплотнение стенки аорты, 2 – кальциноз стенки аорты.

Таблица 2.7. Полуколичественная шкала оценки степени кальциноза структур сердца
Определение податливости брюшного отдела аорты

С целью оценки состояния сосудистого русла определялась податливость брюшного отдела аорты. Для этого с помощью конвексного датчика с частотой 2,5-5,0 MHz в положении больного лежа на спине визуализировали в В-режиме часть аорты, расположенную ниже места отхождения верхней брыжечной и выше места отхождения почечных артерий. Затем в М-режиме регистрировали движение стенок аорты в соответствии с фазами сердечного цикла. Податливость аорты рассчитывали как отношение разности максимального и минимального диаметра к максимальному диаметру, выраженное в процентах [40, 77].

Холтеровское мониторирование ЭКГ

Холтеровское мониторирование ЭКГ проводили на аппарате МТ-200 (Schiller, Швейцария) в течение 24 часов для анализа электрической активности миокарда, диагностики нарушений ритма сердца и проводимости, выявления скрытой ишемии миокарда. Для обработки полученных дан-
ных применялось программное обеспечение MT-200 на базе персонального компьютера. Оценивали показатели минимальной, средней и максимальной частоты сердечных сокращений (ЧСС), наджелудочковую и желудочковую эктопическую активность, максимальную и минимальную продолжительность интервалов RR, динамику сегмента ST.

Суточное мониторирование АД

Суточное мониторирование артериального давления (СМАД) проводили на аппарате A&D (Япония) для характеристики состояния сосудистого русла, выявления артериальной гипертензии, степени ее выраженности, суточной динамики артериального давления, определения индексов нагрузки давлением, а также наличия периодов гипотензии и их взаимосвязи с поражением органов-мишеней при ХСН.

Ультразвуковое исследование почек

Ультразвуковое исследование почек проводилось полипозиционно на аппарате Sequoia-512 (Acuson, USA) конвексным датчиком с частотой 2,5-5,0 MHz. Определяли размеры почек, центрального эхо-комплекса и паренхимы в среднем сегменте и в области полюсов. Измерение длины и толщины почки проводилось в продольных транслюмбальных максимальных по площади срезах; ширины и толщины – при развороте датчика на 90° и поперечном сканировании [42].

Объем почки рассчитывался по формуле:

\[V=0,49*L*W*T, \]

где \(V \) – объем почки, мл; \(L \) – длина почки, см; \(W \) – ширина почки, см; \(T \) – толщина почки, см.

Кроме того, объем почки определялся способом, аналогичным методу дисков (модифицированному алгоритму Симпсона).

Оценка почечной гемодинамики

Почечную гемодинамику исследовали с помощью дуплексного сканирования почечных артерий (ДСПА) у больных основной группы (с
Исследование выполняли конвексным датчиком с частотой 2,5-5,0 МГц с полипозиционным положением больного натощак после 10-12 часового голодания[45]. Сначала визуализировали брюшной отдел аорты, устье и начальную часть обеих почечных артерий (ПА) по короткой оси из срединного доступа в эпигастрии(Рисунок 2.1), затем устье и основной ствол правой и левой ПА по длинной оси из переднего, переднебокового, бокового, заднебокового и заднего доступов [45, 48, 50].

Рисунок 2.1

В режиме импульсно-волновой допплерографии одновременно с регистрацией ЭКГ производили запись спектра скоростей кровотока на уровне основного ствола ПА на расстоянии 1 см от устья, поскольку это дает суммарную информацию о состоянии почечной гемодинамики [17, 18]. Коррекцию угла сканирования проводили таким образом, чтобы линия, определяющая угол наклона сканирования, совпадала с длинной осью сосуда на исследуемом участке. Угол между УЗ лучом и направлением кровотока в нашем исследовании варьировал от 20 до 40° [34, 45, 928].

Автоматически с помощью компьютерной системы рассчитывались максимальная систолическая скорость (Vps), конечная диастолическая скорость (Ved), усредненная по времени в течение сердечного цикла максимальная скорость кровотока (TAMX), а также внутрипочечные индексы сопротивления: пульсационный индекс – PI, индекс резистентности (резистивный) – RI и систоло-диастолическое соотношение S/D[34, 45]. Кроме того, определялась усредненная по времени в течение сердечного цикла средняя скорость кровотока (Vmean) и интеграл линейной скорости кровотока (VTIk).

Для последующей оценки объемной скорости кровотока в том же месте, в котором производили запись спектра скоростей кровотока, определяли внутренний диаметр (D) основного ствола ПА (ОСПА) как среднее от максимального и минимального диаметров в течение сердечного цикла (изображения на пике зубца T и сразу после зубца R соответственно).
Площадь поперечного сечения основного ствола ПА рассчитывали по формуле $S_{ОСПА}=D^2 \times \pi /4$ [34, 62, 928].

Объем крови, поступающий в основной ствол ПА в течение 1 сердечного цикла (SVk), рассчитывался как произведение интеграла линейной скорости кровотока (VTIk) и площади поперечного сечения основного ствола ПА ($S_{ОСПА}$). Минутный объемный кровоток в основном стволе ПА (COk) рассчитывался как произведение объема крови, поступающего в основной ствол ПА в течение 1 сердечного цикла (SVk) и частоты сердечных сокращений (ЧСС) (Рис.3).

Чтобы сравнивать параметры объемного почечного кровотока у людей различной массы тела и роста, мы делили SVk и COk на площадь поверхности тела (BSA) и получали индекс объема крови, поступающего в основной ствол ПА в течение 1 сердечного цикла (SIk), и индекс минутного объемного кровотока в основном стволе ПА (CIk) [34, 62, 928].

Как известно, общий кровоток представляет собой сумму базального и пульсового кровотоков (Рис. 1). Базальный кровоток – это планиметрически рассчитанный кровоток под линией, на которой формируется пульсовая составляющая кровотока [62]. Параметры базального почечного кровотока: SVk баз, SIk баз, COk баз, CIk баз, – рассчитывались по аналогии с параметрами общего почечного кровотока.

Суммарный почечный кровоток рассчитывался как сумма минутного объемного кровотока (COkRL) в основном стволе правой и левой ПА.

С целью увеличения воспроизводимости результатов измерений мы не менее 3 раз регистрировали спектр скоростей кровотока из различных доступов, использовали для расчетов только комплексы кривой скоростей кровотока, имеющие максимальные по значениям показатели скоростей кровотока, максимально чистое «окно» под кривой и только те комплексы, которые воспроизводились в серии при неоднократном снятии спектра с одного и того же участка кривой [42, 45]. Для расчетов использовались средние значения от 10 последовательных сердечных циклов.
Оценка субъективной выраженности клинической симптоматики ХСН

Субъективную выраженность симптоматики оценивали по результатам заполнения больными опросников выраженности симптоматики: разработанного и применяемого на кафедре госпитальной терапии №2 РГМУ [72], Канзасского [394] и Миннесотского [759]. С помощью них мы выясняли субъективное мнение больных о степени выраженности различных симптомов и о том, насколько сильно они мешают выполнению различного уровня нагрузок. Пациенты отвечали на вопросы опросников самостоятельно, а затем каждый ответ обсуждался совместно с исследователем. Мы старались сделать так, чтобы, с одной стороны, заполнение опросника не было результатом интервьюирования, с другой – исключить неоднозначное толкование вопросов [72].

Применяемый на кафедре госпитальной терапии №2 РГМУ опросник выраженности симптоматики ХСН был разработан на основе самооценки больными тяжести симптомов по четырехбалльной системе, аналогично оценке функционального класса. Основные симптомы, ограничивающие физическую активность больного (одышка, слабость, сердцебиение, боли в правом подреберье и т. д.) оценивались больным в связи с переносимостью физической нагрузки, отеки – по их анатомическому уровню, мерцательная аритмия – в зависимости от ее устойчивости и возможности контроля ЧСС одним или несколькими препаратами. Кроме того, физические возможности больного описывались в сравнении с возможностями здоровых лиц (Таблица 2.8 Приложения) [72].

Таблица 2.8 Приложения

Канзасский опросник(KansasCityCardiomyopathyQuestionnaire) представляет собой опросник, разработанный специально для оценки состояния здоровья больных с сердечной недостаточностью. Он состоит из пунктов, которые количественно характеризуют ограничение физической активности, наличие и выраженность характерных симптомов ХСН, веру в эффективность собственных действий и знаний, социальную активность и каче-
ство жизни (Таблица 2.9). Сумма баллов и все составляющие этого опросника независимо друг от друга продемонстрировали свою обоснованность, надежность и чувствительность к клиническим изменениям [317, 394, 413]. Следует отметить, что порядок баллирования симптомов в Канзасском опроснике обратный по сравнению с опросником, разработанным на кафедре, и Миннесотским опросниками. Лучшее самочувствие обозначается большими баллами, худшее – меньшими.

Таблица 2.9 Приложения

При обработке результатов Канзасского опросника мы учитывали количество баллов, отражающее выраженность конкретных симптомов ХСН и общую сумму баллов. Кроме того, рассчитывали сумму баллов по вопросам, характеризующим физическую составляющую опросника (вопросы 1-9, за исключением вопроса 2) и клиническую составляющую (сумму физической составляющей и доменов, характеризующих качество жизни и социальную активность) [317, 394]. При наличии ответа 6 («Действие было затруднено по другим причинам или не выполнялось») в вопросе №1 и №15 расчет суммы баллов не производился. При оценке динамики выраженности клинической симптоматики малым, но клинически значимым изменением считали изменение суммы баллов Канзасского опросника на ≥5, умеренным изменением на ≥10 и выраженным изменением на ≥15 баллов [413].

Оценка качества жизни

Для оценки качества жизни больных с ХСН использовали опросник «Жизнь больных с хронической сердечной недостаточностью» Миннесотского Университета (Minnesota Living with Heart Failure questionnaire) [759]. Он представляет собой некое подобие визуально-аналоговой шкалы, с помощью которой больные могут четко охарактеризовать выраженность симптоматики (Таблица 2.10 Приложения) [759]. Некоторые вопросы этого опросника сходны с вопросами Канзасского и разработанного на кафедре опросников, что позволяло нам оценивать правильность заполнения боль-
ными опросников и получать точную информацию. Данный опросник состоит из 21 вопроса. Общий балл каждого вопроса соответствовал от 0 до 5 баллов согласно тяжести состояния, максимальное количество баллов было 105. Подсчитанное число баллов отражало общее восприятие больным жизни, своего состояния и оценку проводимой терапии. Опросник заполнялся больным самостоятельно. На основании суммарного показателя получали представление, насколько имеющаяся ХСН ограничивает: 1) физические (функциональные) возможности больного справляться с обычными повседневными нагрузками (самообслуживание, толерантность к физическим, социальным, эмоциональным нагрузкам, необходимость иметь адекватный сон и отдых, мобильность и независимость); 2) социально-экономические аспекты и общественные связи пациента (место в семье и участие в жизни семьи, материальное обеспечение и расходы на лечение, профессиональные обязанности, связь с друзьями и активный отдых); 3) положительное эмоциональное восприятие жизни (чувство обузы для семьи и друзей, потеря контроля над жизнью и над собой, страх за будущее и безысходность). При анализе результатов учитывали, что большая сумма баллов свидетельствует о более низком (худшем) и, наоборот, меньшая - о более высоком (лучшем) качестве жизни. В целом этот показатель характеризовал качество жизни больных, которое прослеживалось нами у каждого больного в динамике на протяжении исследования.

Таблица 2.10 Приложения

Оценка объективной выраженности клинической симптоматики

Объективно тяжесть клинической симптоматики у больных оценивалась с помощью классификации функциональных классов ХСН Нью-Йоркской ассоциации сердца (ФК NYHA)[38] и шкалы оценки клинического состояния (ШОКС, Таблица 2.11 Приложения) [4].

Таблица 2.11 Приложения

Каждый симптом, включенный в ШОКС, оценивался количеством баллов от «0» при полном его отсутствии до «3» при значительной его вы-
раженности. Затем подсчитывалась сумма баллов ШОКС. Сумма баллов до 3,5 соответствовала I ФК, от 3,5 до 5,5 – II ФК, от 5,5 до 8,5 – III ФК, выше 8,5 – IVФК ШОКС[4].

Исследование анамнестических данных

Анамнестические данные изучали с помощью разработанного нами опросника: выяснили наличие наследственной отягощенности у родственников I и II линии по артериальной гипертензии (АГ), сахарному диабету, ИБС, ХСН, раннему развитию сердечно-сосудистых событий (у мужчин в возрасте <55 лет и у женщин <65 лет); данные гинекологического анамнеза у женщин (возраст менархе, патология беременности и родов, количество абортов, продолжительности грудного вскармливания); семейное положение; количество браков, детей; особенности взаимоотношений в семье; трудового стажа; занятости; наличия хобби; вредных привычек (прием алкоголя, курение с количественной оценкой длительности и тяжести); дietetических особенностей (регулярное питание, потребление овощей, фруктов; формирование разгрузочных дней, количество потребляемой соли, жидкости и др.); регулярной физической активности; поддержания нормальной массы тела; перенесенных заболеваний; наличия и длительности АГ в анамнезе с максимальными цифрами систолического и диастолического АД; длительности и степени выраженности нарушений углеводного обмена; степени физической активности; применявшихся ранее лекарственных препаратов для выявления возможных факторов риска, способствовавших развитию ХСН и поражению органов-мишеней (Таблица 2.12).

Таблица 2.12. Анкета для оценки анамнестических данных

<table>
<thead>
<tr>
<th>Ответьте, пожалуйста, на вопросы:</th>
<th>Да</th>
<th>Нет</th>
<th>Лет</th>
<th>Мм РТ.ст.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Повышалось ли у Вас артериальное давление (АД) выше 140/90 мм рт.ст.?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сколько лет назад Вы впервые узнали о том, что у Вас повышается АД?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Какое самое высокое систолическое (верхнее) АД у Вас зарегистрировано?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Какое самое высокое диастолическое (нижнее) АД у Вас зарегистрировано? | Мм РТ.ст.
--- | ---
Какие цифры АД отмечаются у Вас в последнее время и привычны для Вас? | / мм РТ.ст.

2. Повышалось ли АД у Ваших родственников:

<table>
<thead>
<tr>
<th>Отца</th>
<th>Да</th>
<th>Нет</th>
<th>Не знаю</th>
</tr>
</thead>
<tbody>
<tr>
<td>Матери</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>дедушки по отцовской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>бабушки по отцовской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>дедушки по материнской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>бабушки по материнской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>родных братьев/сестер/близнецов</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>двоюродных братьев/сестер</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>Детей</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>Племянников</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
</tbody>
</table>

3. Ответьте, пожалуйста, на вопросы:

<table>
<thead>
<tr>
<th>Ставили ли Вам диагноз инфаркта миокарда?</th>
<th>Да</th>
<th>Нет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Если был несколько раз , укажите - сколько.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Когда (в каком году) Вы перенесли инфаркт миокарда?</td>
<td>год</td>
<td></td>
</tr>
</tbody>
</table>

4. Был ли инфаркт миокарда у Ваших родственников (если несколько - укажите):

<table>
<thead>
<tr>
<th>Отца</th>
<th>Да</th>
<th>Нет</th>
<th>Не знаю</th>
</tr>
</thead>
<tbody>
<tr>
<td>Матери</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>дедушки по отцовской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>бабушки по отцовской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>дедушки по материнской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>бабушки по материнской линии</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>Вопрос</td>
<td>Да</td>
<td>Нет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>родных братьев/сестер/близнецов</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>двоюродных братьев/сестер</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Детей</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Племянников</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>всех родственников-мужчин в возрасте <55 лет</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>всех родственников-женщин в возрасте <65 лет</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Сколько лет назад у Вас появилась сердечная недостаточность (одышка при ходьбе, отеки нижних конечностей)

<table>
<thead>
<tr>
<th>Вопрос</th>
<th>Да</th>
<th>Нет</th>
<th>Не знаю</th>
</tr>
</thead>
<tbody>
<tr>
<td>Когда Вам поставили диагноз хронической сердечной недостаточности?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сколько раз Вы госпитализировались по поводу одышки, отеков?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Когда (в каком году) Вы последний раз госпитализировались по поводу одышки и/или отеков?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Была ли хроническая сердечная недостаточность у Ваших родственников:

<table>
<thead>
<tr>
<th>Родственник</th>
<th>Да</th>
<th>Нет</th>
<th>Не знаю</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отца</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Матери</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дедушки по отцовской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>бабушки по отцовской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дедушки по материнской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>бабушки по материнской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>родных братьев/сестер/близнецов</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>двоюродных братьев/сестер</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Детей</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Племянников</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Был ли у Вас инсульт (ОНМК – острое нарушение мозгового кровообращения)?__________

Сколько инсультов Вы перенесли?

Когда (в каком году)?__

8. Был ли инсульт (острое нарушение мозгового кровообращения) у Ваших родственников (если несколько - укажите):

<table>
<thead>
<tr>
<th>Отца</th>
<th>Да</th>
<th>Нет</th>
<th>Не знаю</th>
</tr>
</thead>
<tbody>
<tr>
<td>Матери</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>дедушки по отцовской линии</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>бабушки по отцовской линии</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>дедушки по материнской линии</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>бабушки по материнской линии</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>родных братьев/сестер/близнецов</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>двоюродных братьев/сестер</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>Детей</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>Племянников</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>всех родственников-мужчин в возрасте <55 лет</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
<tr>
<td>всех родственников-женщин в возрасте <65 лет</td>
<td>Da</td>
<td>Nет</td>
<td>Не знаю</td>
</tr>
</tbody>
</table>

9. Ответьте, пожалуйста, на вопросы:

<table>
<thead>
<tr>
<th>Повышался ли у Вас уровень глюкозы (сахара) в крови?</th>
<th>Да</th>
<th>Нет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сколько лет назад Вы впервые узнали о том, что у Вас повышается глюкоза (сахар) в крови?</td>
<td>лет</td>
<td></td>
</tr>
<tr>
<td>Какие самые высокие цифры глюкозы (сахара) в крови были у Вас?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Какие цифры глюкозы (сахара) в крови отмечаются у Вас в последнее время и привычны для Вас?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Придерживаетесь ли Вы диеты с низким содержанием углеводов (сахаров)?</td>
<td>Да</td>
<td>Нет</td>
</tr>
</tbody>
</table>
Принимаете ли Вы таблеттированные препараты для снижения уровня глюкозы (сахара) в крови? Сколько лет?
<table>
<thead>
<tr>
<th></th>
<th>Да</th>
<th>Нет</th>
</tr>
</thead>
</table>

Подкалываете ли Вы препараты инсулина для снижения уровня глюкозы (сахара) в крови? Сколько лет?
<table>
<thead>
<tr>
<th></th>
<th>Да</th>
<th>Нет</th>
</tr>
</thead>
</table>

10. Страдали ли сахарным диабетом Ваши родственники:

<table>
<thead>
<tr>
<th>Родственник</th>
<th>Да</th>
<th>Нет</th>
<th>Не знаю</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отец</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мать</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дедушка по отцовской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>бабушка по отцовской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дедушка по материнской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>бабушка по материнской линии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>родные братья/сестры/близнецы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>двоюродные братья/сестры</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Дети</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Племянники</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Назначали ли им таблеттированные препараты или инсулин? Кому?

12. Были ли у Вас переломы?
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Сколь-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ко?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Когда (в каких го-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>дах)?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. Курили (куриете) ли Вы? Если – да, то:

<table>
<thead>
<tr>
<th>Сколько лет назад Вы начали курить?</th>
<th>Лет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сколько лет назад Вы перестали курить?</td>
<td>Лет</td>
</tr>
<tr>
<td>Сколько лет вы курили?</td>
<td>лет</td>
</tr>
<tr>
<td>Какое количество сигарет в сутки в среднем Вы выкуриваете (выкуривали)?</td>
<td></td>
</tr>
</tbody>
</table>

Индекс курящего человека (ИКЧ, пачек/лет)=количество выкур сигарет в сутки * стаж курения (годы)/20

14. Злоупотребляли (злоупотребляете) ли Вы алкоголем? Если – да, то:

<table>
<thead>
<tr>
<th>Сколько лет назад Вы начали злоупотреблять алкоголем?</th>
<th>Лет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сколько лет назад Вы перестали злоупотреблять?</td>
<td>Лет</td>
</tr>
</tbody>
</table>
Сколько лет вы злоупотребляли алкоголем?
Какое количество спирта в сутки в среднем Вы выпиваете (выпивали)?

| 15. Знаете ли Вы свой рост и вес при рождении? |
|
| 16. Как долго вы были на грудном вскармливании? |
|
| 17. Каков Ваш рост и вес в настоящее время? |
|
| 18. В каком возрасте и после чего у Вас отмечалась значительная прибавка массы тела? |
|
| 19. Предпринимали ли вы попытки снижения массы тела? Какими способами? Были ли они успешными? |
|
| 20. Соблюдаете ли вы диету? Какую? |

<table>
<thead>
<tr>
<th>Вы употребляете в пищу мучное, сладкое?</th>
<th>Да</th>
<th>Нет</th>
<th>Сколько раз в неделю?</th>
<th>В течение какого времени?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вы употребляете в пищу жирное, жареное?</td>
<td>Да</td>
<td>Нет</td>
<td>Сколько раз в неделю?</td>
<td>В течение какого времени?</td>
</tr>
<tr>
<td>Вы употребляете в пищу мясные, белковые продукты?</td>
<td>Да</td>
<td>Нет</td>
<td>Сколько раз в неделю?</td>
<td>В течение какого времени?</td>
</tr>
<tr>
<td>Вы употребляете в пищу соленое, маринады?</td>
<td>Да</td>
<td>Нет</td>
<td>Сколько раз в неделю?</td>
<td>В течение какого времени?</td>
</tr>
<tr>
<td>Вы употребляете в пищу пряности, остroe?</td>
<td>Да</td>
<td>Нет</td>
<td>Сколько раз в неделю?</td>
<td>В течение какого времени?</td>
</tr>
<tr>
<td>Позволяете ли Вы себе делать перекусы между завтраком, обедом и ужином?</td>
<td>Да</td>
<td>Нет</td>
<td>Сколько раз в неделю?</td>
<td>В течение какого времени?</td>
</tr>
<tr>
<td>Позволяете ли Вы себе употреблять пищу после 19 часов вечера?</td>
<td>Да, до…ч</td>
<td>Нет</td>
<td>Сколько раз в неделю?</td>
<td>В течение какого времени?</td>
</tr>
</tbody>
</table>

21. Какими были у Вас операции? травмы?

<table>
<thead>
<tr>
<th>Название заболевания, вид травмы, операции</th>
<th>В каком году поставлен диагноз?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Год</td>
<td>Год</td>
</tr>
<tr>
<td>Год</td>
<td>год</td>
</tr>
<tr>
<td>Год</td>
<td>Год</td>
</tr>
</tbody>
</table>

22. Проводили ли Вам вмешательства на сердце: коронароангиографию, стентирование, шунтирование?
В каком году это было?_______________________________________

23. Выявляли ли у Вас камни в почках?
24. Бывают ли у Вас нарушения мочеиспускания: учащение, рези?
25. Диагностировали ли у Вас инфекции мочевой системы?
26. Диагностировали ли у Вас нарушения оттока мочи? С чем их связывали?
27. Посещали ли Вы когда-либо ревматолога? Какие заболевания диагностировал этот специалист?
28. Какие заболевания еще были у Вас в жизни?
29. Какие лекарственные препараты Вы принимаете?

<table>
<thead>
<tr>
<th>Название лекарственного препарата</th>
<th>Доза</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30. Для женщин:

В каком возрасте у Вас начались менструации?
Сколько раз Вы были беременны? В каком возрасте?
Сколько у Вас было родов? В каком возрасте?
Сколько у Вас было абортов? В каком возрасте?
В течение какого времени Ваш ребенок находился на грудном вскармливании?
Была ли у Вас патология женских половых органов, молочных желез? Какая?
Была ли у Вас патология беременности и родов? Какая?
Поднималось ли АД во время беременности? Мах цифры АД?
В каком возрасте у Вас закончились менструации?
Были ли (есть ли) у Вас приливы? Как часто?

Тредмил-тест

Для оценки переносимости физических нагрузок больным состоянии компенсации на фоне подобранной терапии проводилась нагрузочная проба на бегущей дорожке (JaegerLE200 C) при ХСНсФВ по стандартному протоколу Bruce. При ХСНнФВ нагрузочная проба проводилась по протоколу Naughton, предполагающему постепенное увеличение угла наклона при постоянной скорости дорожки, который показал преимущество по
функциональной и прогностической значимости у больных с низкой перено-
симостью физических нагрузок[12, 29].Физическая нагрузка прекраща-
лась при появлении симптомов ее непереносимости – одышки, усталости
или слабости, при этом уровень нагрузки считался пороговым.

Максимальной ЧСС, которая рассчитывается по формуле ЧССмакс = 220 – возраст (годы), или субмаксимальной ЧСС, составляющей 85% от максимальной, обследованные пациенты не достигали. Переносимость физической нагрузки у большинства пациентов ограничивалась одышкой и слабостью. В случае, если при нагрузке возникали боли в грудной клетке и/или значимая диспозиция сегмента ST (5 человек с ХСНиФВ, у одного из них это сопровождалось появлением на ЭКГ частой желудочковой экстра-
систолии по типу бигеминии, купировавшейся самостоятельно на 2-й мину-
туте восстановительного периода), больного из сравнительного анализа
исключали.

Для расчетов использовались следующие показатели: значения ЧСС, АД исходные и на высоте нагрузки, максимальное двойное произведе-
ние, продолжительность исследования, объем выполненной работы, вы-
раженный в метаболическом эквиваленте (метаболическая единица – МЕТ,
1 МЕТ равна потреблению кислорода 3,5 л/мин/кг).

Максимальное (пороговое) двойное производное (ДП) – показатель, косвенно характеризующий уровень потребления миокардом кислорода, – рассчитывалось по формуле[20]:

ДП=САД*ЧСС,

где САД – систолическое артериальное давление на высоте нагрузки,
ЧСС – частота сердечных сокращений на высоте нагрузки.

Мощность выполненной нагрузки (Вт) рассчитывалась по формуле[20]:

Мощность=А+(В – А/T)*t,

где А – мощность последней полностью выполненной ступени, В – мощность той ступени, на которой была прекращена проба, T – длитель-

232
ность каждой ступени нагрузки по протоколу, \(t \) – длительность выполнения нагрузки в минутах на последней ступени.

Толерантность к физической нагрузке считалась высокой при мощности выполненной нагрузки 2 Вт/кг массы тела, средней – 1,5 Вт/кг, низкой – 1 Вт/кг [29].

6-минутный тест

Части больных для оценки переносимости физических нагрузок проводился 6-минутный тест по стандартной методике.

Исследование толерантности к физической нагрузке не проводилось пациентам с наличием общепринятых или специфических, связанных с наличием ХСН, противопоказаний (патологией опорно-двигательного аппарата, остаточными явлениями перенесенного острого нарушения мозгового кровообращения, паркинсонизмом, исходной ЧСС, превышающей ее субмаксимальное значение для возрастной группы, выраженной гипотензии, синдромом слабости синусового узла).

Комплексное функциональное исследование внешнего дыхания

Комплексное функциональное исследование внешнего дыхания включало в себя спирографию, пневмотахографию, бодиплетизмографию, исследование сопротивления дыхательных путей, диффузионной способности легких было выполнено в соответствии со стандартами качественного измерения Европейского респираторного и Американского торакального обществ на аппарате MasterScreenBody(Jaeger, Германия).

Анализировали следующие показатели: жизненную емкость легких, измеренную на вдохе (ЖЕЛ), форсированную жизненную емкость легких (ФЖЕЛ), объем формированного выдоха за первую секунду (ОФВ1), коэффициент, или тест, Тиффно (КТ=ОФВ1/ЖЕЛ), индекс Генслера (ИГ=ОФВ1/ФЖЕЛ), остаточный объем легких (ООЛ) – объем воздуха, остающийся в легких после максимально глубокого выдоха, функциональную остаточную емкость (ФОЕ) – объем воздуха, остающийся в легких по-
сле спокойного выдоха, общую емкость легких (ОЕЛ = ЖЕЛ + ООЛ), соотношение ООЛ/ОЕЛ.

Нормальными считались спирограммы, в которых величина ОФВ1 и ФЖЕЛ были больше LLN или 80% должных значений, а индекса Генслера — не ниже 70%. Снижение ОФВ1 (меньше LLN или меньше 80% должной) и индекса Генслера (менее 70%) расценивалось как обструктивный тип вентиляционных нарушений. Уменьшение ЖЕЛ и ФЖЕЛ меньше LLN или меньше 80% должной при нормальных значения индекса Генслера — как рестриктивный тип нарушений вентиляции. Сочетание обструктивных и рестриктивных вентиляционных нарушений расценивалось как смешанный тип нарушений [24].

Для оценки результатов спирометрии и бодиплетизмографии использовали должные величины Европейского общества угля и стали (ECCS), LLN рассчитывали по формуле LLN = Pred – 1,645SE, где Pred — должная величина, а SE — стандартная ошибка (Таблица 2.13 Приложения) [23, 716].

Таблица 2.13 Приложения.

При пневмотахографии регистрировали кривую поток-объем при форсированном выдохе. Также измеряли сопротивление дыхательных путей путем перекрытия дыхательной трубки специальной заглушкой в конце выдоха на уровне ФОЕ. После этого пациент делал несколько волевых попыток вдохов и выдохов при закрытой дыхательной трубке. При этом газ (воздух), содержащийся в легких пациента, на выдохе сжимался, а на вдохе разрежался. В это время производили измерения давления воздуха в ротовой полости (эквивалент альвеолярного давления) и внутригрудного объема воздуха (отображение колебаний давления в герметической кабине). При этом производили вычисление показателей бронхиального сопротивления.
Альвеолярный объем (V_A) измеряли по дилюции инертного газа в течение 1 дыхательного маневра. Диффузионную способность определяли по диффузии монооксида углерода (DL_CO).

Двухэнергетическая рентгеновская денситометрия

Диагноз остеопороза устанавливался: 1) на основании анамнестических данных о перенесенном спонтанном переломе или переломе при незначительной травме (т.н. низкоэнергетическом переломе); либо 2) по результатам двухэнергетической рентгеновской абсорбциометрии (ДРА, денситометрии) позвоночника и/или бедра[36].

ДРА проводили на аппарате «LunarProdigyActive» на уровне поясничного отдела позвоночника (L1-L4) и бедренной кости (Neck, UpperNeck, Troch, Total). При этом измеряли минеральную плотность костной ткани (МПК) в позвоночнике и проксимальном отделе бедренной кости (т.н. «централиная» или «аксиальная» ДРА)[36]. В соответствии с критериями ВОЗ, остеопороз диагностировали при значениях минеральной плотности кости хотя бы в одной из точек 2,5 стандартных отклонений (SD) или ниже, чем у молодых представителей контрольной группы (Т-критерий ≤ -2,5SD), остеопению - при значениях Т-критерия хотя бы в одной из точек от -1 до -2,5 SD, норму - при значениях Т-критерия от +2,5 до 1 SD от пиковой костной массы [36, 754].

10-летнюю вероятность переломов любой локализации и шейки бедра рассчитывали с помощью шкалы FRAX[754].

Ультразвуковое исследование печени

Анализировали результаты ультразвукового исследования печени, проведенного в рамках стандартного обследования больных с ХСН сотрудниками отделения УЗ-диагностики НО МФ МСЧ №1 АМО ЗИЛ, с 2006 г. - ГБУЗ ГКБ №12 ДЗМ, с 2015 – ГКБ им.В.М.Буянова ДЗМ, учитывали наличие признаков асцита и гепатомегалии.

Генетический анализ
Для выявления генетических предикторов поражения органов-мишеней определяли полиморфные маркеры (SNP) генов-кандидатов компонентов САС - Glu27Gln гена ADRB2, C825T гена системы G-белка GNB3, Pro72Arg гена регулятора апоптоза TP53. Идентификация полиморфных маркеров проводилась с помощью полимеразной цепной реакции на геномной ДНК, полученной по стандартной методике из цельной крови (Гос НИИ Генетика, ИБХФ РАН, проф. Носиков В.В.). Проведено сопоставление данных генотипирования с данными анамнеза, результатами клинико-лабораторно-инструментального обследования и прогнозом.

Коррекция терапии, контроль за приверженностью к терапии, оценка ее влияния на органы-мишени и лечение остеопороза у больных с ХСН

Всем больным после включения в исследование производили коррекцию терапии в соответствии с современными рекомендациями [38]. Из рекомендованных к применению у данной категории больных ингибиторов АПФ назначали эналаприл, фозиноприл или периндоприл, при их непереносимости - блокатор рецепторов ангиотензина II лозартан. Из рекомендованных больным с ХСН бета-адреноблокаторов назначали бисопролол, метопролол или карведилол. Для оценки влияния разных ингибиторов АПФ и бета-адреноблокаторов на состояние органов-мишеней проведено сравнение СКФ, ЭАМ на фоне непрерывного лечения разными препаратами этих групп в течение 3 месяцев. Также для выявления влияния антикоагулянтной и дезагрегантной терапии на органы-мишени проведено сравнение СКФ, ЭАМ на фоне непрерывного лечения варфарином, ацетилсалициловой кислотой и их комбинацией в течение 3 месяцев.

Для повышения эффективности проводимой терапии больным предоставлялась письменная информация с использованием печатных и электронных образовательных ресурсов и проводились устные беседы с пациентами и их родственниками о сущности ХСН, особенностях течения и возможных осложнениях, необходимости лечения, параметрах, которые
необходимо мониторировать во время него, особенностях и режимах не-
медикаметозной терапии, в т.ч. диеты, физических нагрузок, отказа от
вредных привычек.

С целью лечения остеопороза и профилактики развития переломов
стабильным больным с диагностированным остеопорозом назначали фо-
самакс 70 мг внутрь один раз в неделю и кальций D3 никомед (1250 мг
кальция карбоната и 200 МЕ колекальциферола – витамина D3) по 1 таб-
летке 2 раза в день. Проведена оценка риска развития переломов и влияние
терапии на прогноз в течение 3 лет.

Статистическая обработка результатов

Статистическую обработку результатов проводили с помощью про-
эраммы STATISTICA8.0 (StatSoft, USA). Предварительный анализ вида
распределения данных проводили с помощью построения гистограмм рас-
пределения признака и сравнения их с кривой нормального распределения.
Для подтверждения вида распределения использовали критерии Лиллие-
форса и Шапиро-Уилка[54].

Поскольку часть полученных данных не подчинялась закону норм-
ального распределения, статистическую обработку проводили с помо-
щью непараметрических методов. Центральную тенденцию и дисперсию
количество признака представляли в виде медианы и интерквартиль-
ного размаха, который указывали в скобках. Для сравнительного анализа
формировали группы пациентов по значениям изучаемого показателя вы-
ше и ниже его нормального уровня в популяции. При отсутствии обще-
приятной нормы или в тех случаях, в которых разделение больных в соответ-
ствии с ней было малоинформативным, группы формировали по значениям
показателя выше и ниже его медианы в обследуемой группе больных.
Оценку межгрупповых различий в двух независимых группах проводили с
помощью критерия Манна-Уитни. При сравнении нескольких независи-
мых групп применяли метод Краскела-Уоллиса. Достоверность различий
по показателям, измеренным в различные моменты времени у одних и тех
же больных, оценивали с помощью метода Вилкоксона. Силу и направление корреляции между различными показателями определяли с помощью коэффициента ранговой корреляции Спирмена. Зависимость одного параметра от нескольких других показателей исследовали с помощью метода многофакторного регрессионного анализа[13, 19, 54].

Частисследуемых показателей при условии их нормального распределения сравнивали со значениями соответствующих показателей в популяции. При этом с помощью 95% доверительного интервала для среднего значения и метода проверки гипотез с использованием t-критерия Стьюдента определяли достоверность различий с показателями в популяции. Результаты представляли как среднее и стандартное отклонение[54].

При анализе качественных данных определяли абсолютную и относительную частоту для каждого значения признака. Для относительной частоты бинарных признаков указывали 95% доверительный интервал (95% ДИ). Значения его верхней и нижней границ вычисляли по формуле:

\[P \pm t \cdot \sqrt{P(1-P)/n} + 1/(2n) \]

где P – относительная частота события, выраженная десятичной дробью, n – общее число объектов исследования в выборке, t – значение t-критерия, обычно принимается приближенно равным 1,96 для 95% ДИ, 1/(2n) – поправка на непрерывность, компенсирующая ошибку, возникающую при аппроксимации биномиального распределения нормальным [54].

При сравнении относительных частот признаков в двух группах и коэффициентов корреляций производили проверку гипотез об их равенстве с помощью двустороннего критерия статистической значимости[54].

Распределение больных в соответствии со значениями двух качественных признаков оценивали с помощью таблиц сопряженности. Для сопоставления групп по качественному признаку использовали критерий хи-квадрат (метод максимального правдоподобия)[54].
Анализ точности диагностического метода включал расчет его операционных характеристик: чувствительности и специфичности – по стандартной методике[54].

Выживаемость больных исследовали методом построения кривых выживаемости Каплана-Мейера. Анализ влияния отдельных факторов на выживаемость проводили с помощью F критерия Кокса (C_F), логрангового критерия (L_R) и критерия Гехана-Вилкоксона (G_W), многофакторный анализ - с помощью регрессионного анализа Кокса [13, 19, 54].

Статистически значимым считался уровень $p<0,05$.
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Сравнительная характеристика структурно-функционального состояния сердечно-сосудистой системы у больных с ХСН со сниженной и сохраненной фракцией выброса левого желудочка

Мы наблюдали больных с хронической сердечной недостаточностью (ХСН) сниженной (ХСНнФВ, основная группа) и сохраненной фракцией выброса левого желудочка ФВ ЛЖ (ХСНсФВ, Таблица 2.1).

Структурно-функциональное состояние сердца по результатам ЭХОкг

Для оценки структурно-функционального состояния сердца проводилось эхокардиографическое исследование (ЭХОкг). При этом у больных с ХСНнФВ была выявлена более выраженная дилатация желудочков и левого предсердия, чем при ХСНсФВ (р<0,001, Таблица 3.1). Несмотря на то, что толщина стенок ЛЖ у этих групп пациентов значимо не различались, при ХСНнФВ отмечалась большая масса миокарда ЛЖ (р<0,001). Гипертрофия миокарда ЛЖ выявлена у 93,4% пациентов с ХСНнФВ и 76% больных с ХСНсФВ. У 99,4% больных с ХСНнФВ и гипертрофией миокарда ЛЖ характер гипертрофии миокарда был эксцентрическим. При ХСНсФВ у всех пациентов отмечался концентрический характер гипертрофии миокарда ЛЖ.

Фракция выброса ЛЖ, ударный индекс (УИ) и сердечный индекс (СИ) были выше у больных с ХСНсФВ (р<0,05). Признаки диастолической дисфункции ЛЖ были выявлены у всех пациентов с ХСН У больных с ХСНнФВ распределение 1/2/3 типов ДД было 51,0/23,5/25,5%, у больных с ХСНсФВ – 61,9/38,1/0%, т.е. при ХСНнФВ степень нарушения диастолической функции была более выражена (р=0,016).

У многих больных с ХСНнФВ выявлена дилатация предсердий. Индексированные конечно-диастолические объемы левого и правого предсердий (ИКДОлп, ИКДОпп) составили 39,8 (32,7;49,5) и 40,8 (26,5;56,9)
мл/м², Отношение E/Em латерального и перегородочного отделов ФКМК составило 5,9 (5,0;7,1) и 7,1 (6,0;8,0).

У 48,7% больных с ХСНнФВ была выявлена постинфарктная аневризма миокарда ЛЖ, причем у 47,5% больных с аневризмой ЛЖ были признаки с пристеночного тромбоза ЛЖ. У 6,6% больных с ХСНнФВ выявлены тромбы или псевдоконтрастирование ЛЖ в отсутствие аневризматических изменений. У больных с ХСНсФВ аневризм, признаков внутрисердечного тромбоза и псевдоконтрастирования не было.

При ХСНнФВ была более выражена недостаточность аортального, митрального и трикуспидального клапанов, чем при ХСНсФВ (p<0,05). Достоверных различий по тяжести легочной гипертензии при ХСНнФВ и ХСНсФВ не было (p=0,34).

Таблица 3.1. Характеристика структурно-функционального состояния сердца у больных с ХСНнФВ и ХСНсФВ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ХСНнФВ (n=212)</th>
<th>ХСНсФВ (n=30)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЛП, см</td>
<td>4,89 (4,34; 5,42)</td>
<td>3,91 (3,38; 4,44)</td>
<td><0,001</td>
</tr>
<tr>
<td>КДР пж, см</td>
<td>3,52 (2,9; 4,11)</td>
<td>2,71 (2,20; 3,05)</td>
<td><0,001</td>
</tr>
<tr>
<td>Т мжп, см</td>
<td>1,18 (0,93;1,32)</td>
<td>1,16 (1,05; 1,51)</td>
<td>0,17</td>
</tr>
<tr>
<td>КДР ЛЖ, см</td>
<td>6,42 (5,67; 7,04)</td>
<td>4,86 (4,61; 5,17)</td>
<td><0,001</td>
</tr>
<tr>
<td>Т зс, см</td>
<td>1,18 (1,05; 1,35)</td>
<td>1,11 (1,05; 1,27)</td>
<td>0,32</td>
</tr>
<tr>
<td>ИММ/BSA, г/м²</td>
<td>196,0 (167,3; 239,6)</td>
<td>149,8 (115,3; 173,1)</td>
<td><0,001</td>
</tr>
<tr>
<td>КДО ЛЖлж, мл</td>
<td>202,1 (163,2; 237,7)</td>
<td>97,4 (79,0; 113,1)</td>
<td><0,001</td>
</tr>
<tr>
<td>КСО ЛЖ, мл</td>
<td>145,1 (116,2; 171,3)</td>
<td>35,7 (23,2; 45,3)</td>
<td><0,001</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>30,5 (25,3;36,9)</td>
<td>64,1 (57,0; 68,6)</td>
<td><0,001</td>
</tr>
<tr>
<td>УИ ЛЖ, мл/м²</td>
<td>24,0 (18,8; 29,8)</td>
<td>31,5 (24,2; 33,6)</td>
<td>0,013</td>
</tr>
<tr>
<td>СИ ЛЖ, л/мин/м²</td>
<td>1,76 (1,42;2,23)</td>
<td>2,43 (1,59; 2,95)</td>
<td>0,015</td>
</tr>
<tr>
<td>Е, м/с</td>
<td>0,85 (0,66; 0,96)</td>
<td>0,66 (0,53; 0,71)</td>
<td>0,003</td>
</tr>
<tr>
<td>Е/A</td>
<td>1,3 (0,8; 2,4)</td>
<td>0,84 (0,71; 1,0)</td>
<td>0,006</td>
</tr>
<tr>
<td>E/Em</td>
<td>5,9 (4,7; 7,1)</td>
<td>4,5 (4,2; 5,0)</td>
<td>0,016</td>
</tr>
<tr>
<td>AR, степень</td>
<td>I (0; I)</td>
<td>0 (0; 0)</td>
<td>0,007</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>MR, степень</td>
<td>II (II; III)</td>
<td>I (I; II)</td>
<td>0,026</td>
</tr>
<tr>
<td>TR, степень</td>
<td>II (I; III)</td>
<td>I (0; II)</td>
<td>0,005</td>
</tr>
<tr>
<td>СДЛА, мм рт.ст.</td>
<td>36,2 (30,0; 48,0)</td>
<td>29,6 (29,2; 45,0)</td>
<td>0,34</td>
</tr>
<tr>
<td>Степень легочной гипертензии: 0/1/2/3,%</td>
<td>20,9/53,7/22,7/2,7</td>
<td>50/33,3/16,7/0</td>
<td>-</td>
</tr>
<tr>
<td>Кальциноз АоА: 0/1/2,%</td>
<td>12,3/77,8/9,9</td>
<td>35,3/41,2/23,5</td>
<td>0,58</td>
</tr>
<tr>
<td>Кальциноз АК: 0/1/2/3,%</td>
<td>36,3/51,3/8,7/3,7</td>
<td>53,3/20,0/20,0/6,7</td>
<td>0,58</td>
</tr>
<tr>
<td>Кальциноз МК: 0/1/2/3,%</td>
<td>33,7/51,3/12,5/2,5</td>
<td>53,3/26,7/0/20,0</td>
<td>0,39</td>
</tr>
</tbody>
</table>

Поскольку в исследование не включались больные с гемодинамически значимыми пороками сердца, степень кальциноза митрального и аортального клапанов варьировала от 0 до 3 баллов. Суммарный кальциноз сердца и аорты у пациентов с ХСНнФВ составил 7, у больных с ХСНсФВ 5 баллов. Выраженность кальциноза структур сердца и аорты у больных этих двух групп достоверно не отличалась (р>0,05).

У больных с наличием кальциноза 1 или нескольких клапанов сердца и/или аорты были выше сердечный и ударный индексы (1,86 (1,67; 2,49) и 1,53 (1,47; 1,64), p=0,007; 26,2 (21,4; 30,3) и 20,1 (19,9; 26,3), p=0,038). Выраженность кальциноза структур сердца была прямо взаимосвязана с гипертрофией миокарда ЛЖ, объемом левого предсердия, выраженно стостью недостаточности аортального и митрального клапанов, легочной гипертензии (для показателя суммарного кальциноза сердца и аорты r=0,8, p=0,03 сИММ/BSA, r=0,34, p=0,031 собственом левого предсердия, r=0,22, p=0,045 со степенью аортальной регургитации, r=0,27, p=0,009; со степенью митральной регургитации, r=0,28, p=0,014 с систолическим давлением в легочной артерии).

Переносимость физических нагрузок
Переносимость физических нагрузок оценивали с помощью тредмил- и 6-минутного теста.

У больных с ХСНнФВ толерантность к физической нагрузке, оцененная с помощью тредмилтеста, была существенно ниже, чем при ХСНсФВ (Таблица 3.2).

Таблица 3.2. Результаты тредмилтеста у больных с ХСН

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ХСНнФВ (n=71)</th>
<th>ХСНсФВ (n=23)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>САД исх, мм рт.ст.</td>
<td>110 (100; 120)</td>
<td>130 (120; 140)</td>
<td><0,001</td>
</tr>
<tr>
<td>ДАД исх, мм рт.ст.</td>
<td>70 (60; 75)</td>
<td>80 (75; 90)</td>
<td><0,001</td>
</tr>
<tr>
<td>ЧСС исх, мин-1</td>
<td>77 (64; 90)</td>
<td>80 (72; 90)</td>
<td>0,41</td>
</tr>
<tr>
<td>Время нагрузки, с</td>
<td>407,5 (234; 604)</td>
<td>315 (195; 381)</td>
<td>0,046*</td>
</tr>
<tr>
<td>Количество выполненных степеней</td>
<td>2,26 (1,3; 3,36)</td>
<td>1,75 (1,08; 2,12)</td>
<td>0,046*</td>
</tr>
<tr>
<td>САД нагр, мм рт.ст.</td>
<td>130 (120; 155)</td>
<td>170 (160; 185)</td>
<td><0,001</td>
</tr>
<tr>
<td>ДАД нагр, мм рт.ст.</td>
<td>80 (70; 80)</td>
<td>90 (80; 100)</td>
<td><0,001</td>
</tr>
<tr>
<td>ЧСС нагр, мин-1</td>
<td>109 (94; 132)</td>
<td>132 (122; 140)</td>
<td>0,001</td>
</tr>
<tr>
<td>Прирост ЧСС на каждой ступени нагрузки, мин-1</td>
<td>5,6 (3,3; 9,2)</td>
<td>9,4 (7,2; 14,1)</td>
<td><0,001</td>
</tr>
<tr>
<td>Прирост АД, мм рт.ст</td>
<td>20 (10; 40)</td>
<td>40 (30; 55)</td>
<td>0,003</td>
</tr>
<tr>
<td>Двойное произведение, мм рт.ст./мин</td>
<td>15980 (11620; 19040)</td>
<td>22480 (20060; 24500)</td>
<td><0,001</td>
</tr>
<tr>
<td>МЕТ</td>
<td>3,9 (1,95; 4,5)</td>
<td>6,5 (4,9; 7,5)</td>
<td><0,001</td>
</tr>
</tbody>
</table>

*различия связаны с использованием разного протокола тредмилметрии у больных с ХСНнФВ и ХСНсФВ.

Пациенты с ХСНнФВ достигали меньшей ЧСС на высоте нагрузки, у них отмечался меньший прирост ЧСС за время выполнения ступени, меньшие цифры АД на высоте нагрузки, значения двойного прозведения и
объема выполненной работы, выраженного в метаболическом эквиваленте (МЕТ).

Переносимость физических нагрузок у больных с ХСН была обратно связана с количеством перенесенных инфарктов миокарда, размерами камер сердца, прямо связана - с ФВ, УИ и СИ ЛЖ и не коррелировала с возрастом, ИМТ, длительностью ХСН и временем, прошедшим после последнего инфаркта миокарда (Таблица 3.3).

Таблица 3.3. Взаимосвязь (r; p) результатов тредмилтеста у больных ХСНс анамnestическими и эхокардиографическими данными

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Двойное произведение (n=93)</th>
<th>МЕТ (n=93)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество ИМ в анамнезе</td>
<td>-0,42; <0,001</td>
<td>-0,35; 0,001</td>
</tr>
<tr>
<td>КДО ЛЖлж, мл</td>
<td>-0,48; <0,001</td>
<td>-0,35; 0,001</td>
</tr>
<tr>
<td>КСО ЛЖ, мл</td>
<td>-0,49; <0,001</td>
<td>-0,36; <0,001</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>0,5; <0,001</td>
<td>0,43; <0,001</td>
</tr>
<tr>
<td>УИ ЛЖ, мл/м²</td>
<td>0,26; 0,013</td>
<td>0,12; 0,3</td>
</tr>
<tr>
<td>СИ ЛЖ, л/мин/м²</td>
<td>0,35; <0,001</td>
<td>0,03; 0,76</td>
</tr>
<tr>
<td>ИММ/BSA, г/м²</td>
<td>-0,31; <0,001</td>
<td>-0,35; <0,001</td>
</tr>
</tbody>
</table>

При выполнении 6-минутного теста пройденное расстояние у больных с ХСНнФВ (n=50), которым не проводилась тредмилметрия, составило 224 (186; 465) метров. Причиной прекращения выполнения теста являлись появление одышки, слабости, истечение времени, отведенного для выполнения теста. Переносимость физической нагрузки по результатам выполнения 6-минутного теста коррелировала с суммой баллов Канзасского опросника выраженности клинической симптоматики (r=0,55, p=0,011).

Нарушения ритма и проводимости у больных с ХСН

Нарушения ритма и проводимости выявляли с помощью ЭКГ и ХМЭКГ.
На ЭКГ полная блокада левой ножки пучка Гиса была зарегистрирована у 16,4%, блокада передней ветви левой ножки пучка Гиса – 15,5%, полная блокада правой ножки пучка Гиса – у 4,3%, сочетание блокады правой и передней левой ножки - 0,9%, постоянная кардиостимуляция – 5,2% больных с ХСНФВ (N=116). Среди пациентов с ХСНсФВ блокада передней ветви левой ножки пучка Гиса выявлена у 2 пациентов, постоянный эндокардиостимулятор был установлен у 1 больного.

Холтеровское мониторирование ЭКГ проведено 40 больным с ХСН-ФВ в течение 22,5 (21,5; 24,2) часов. При этом основным ритмом был синоусовый у 56,4%, фибрилляция предсердий – 43,6%. Больным с установленным постоянным электрокардиостимулятором холтеровское мониторирование не проводилось. ЧСС основного ритма средняя 71 (61; 82) в минуту, минимальная 47 (41; 49) в минуту, максимальная 112 (92; 140) в минуту. Max RR интервал составил 1740 (1492; 2228) мс. Бессимптомные паузы>2,5 секунд зарегистрированы у пяти пациентов (12,5%) продолжительностью 3152 (2960; 3448) мс. Больным проведена коррекция терапии с уменьшением дозы или отменой препаратов с отрицательным хронотропным действием, повторное холтеровское мониторирование ЭКГ, установлен постоянный кардиостимулятор. Среди больных с ХСНсФВ постоянный эндокардиостимулятор был установлен 1 пациенту.

У всех пациентов регистрировались желудочковые и у 66,7% наджелудочковые экстрасистолы в количестве 526 (64; 1907) и 31,5 (0; 394) за время мониторирования с максимальным количеством 47,5 (12; 164)и 6,5 (0; 32) в течение часа соответственно. Среди желудочковых экстрасистол парные отмечались у 74,3%, бигеминия – 42,9% и тримеминия – у 25,7% больных. У 10 пациентов выявлены пробежки бессимптомной желудочковой тахикардии в количестве 2 (1; 7) с максимальной ЧСС 136 (111; 149) в минуту максимальной продолжительностью 2 (1;2) секунды. Всем пациентам с пробежками ЖТ предложена установка кардиовертера.
дефибриллятора. Один пациент от этого отказался, через 6 месяцев после этого – 2 эпизода ЖТ на фоне ТЭЛА, летальный исход.

У 38,2% больных выявлены пробежки бессимптомной наджелудочковой тахикардии в количестве 1 (1; 7) с максимальной ЧСС 134 (122; 144) в минуту максимальной продолжительностью 2 (1; 6) секунды. Признаки атриовентрикулярной блокады I степени отмечались у 27,8% больных. Диагностически значимая депрессия сегмента была зарегистрирована у 15,4% пациентов.

Характеристика артериального давления

При суточном мониторировании АД у больных с ХСНиФВ (n=53) средние значения САД составили 110,5 (104,5; 124,0) мм рт.ст., ДАД – 69,0 (66,0; 75,0) мм рт.ст. Максимальные цифры САД 154 (139; 169), ДАД 99 (89; 105) мм рт.ст. Минимальные цифры САД 85 (77; 92), ДАД 49 (43; 56) мм рт.ст.

Клиническая симптоматика коррелировала со минимальными значениями ДАД: г₀=0,59, р₀=0,0008 для суммы баллов Канзасского опросника, г₀=0,57, р₀=0,001 для суммы баллов физической составляющей Канзасского опросника, г₀=−0,44, р₀=0,017 для суммы баллов Миннессотского опросника, г₀=−0,38, р₀=0,045 для суммы баллов физической составляющей Миннессотского опросника, г₀=−0,43, р₀=0,019 для суммы баллов кафедрально-го опросника и г₀=−0,43, р₀=0,021 для суммы баллов физической составляю-щей кафедрального опросника. С показателями САД, максимальными цифрами ДАД корреляции выраженности клинической симптоматики не отмечалась.

Таким образом, у больных с большей выраженностью клинической симптоматики были ниже цифры минимального ДАД. Во-первых, это должно учитываться при назначении терапии и мониторировании её эффективности у больных с ХСН. Во-вторых, гипотензия может быть одним из патогенетических механизмов поражения органов-мишеней при ХСН, что будет рассмотрено ниже.
Поражение почек как органа-мишени

Скорость клубочковой фильтрации у больных с хронической сердечно-сосудистой недостаточностью

Для характеристики функционального состояния почек мы оценили и сравнили значения СКФ, рассчитанные с помощью различных формул, у больных с ХСНнФВ, ХСНсФВ и ГБ (Таблица 3.4).

Таблица 3.4. Функциональное состояние почек у больных с ХСН и ГБ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ХСНнФВ (n=212)</th>
<th>ХСНсФВ (n=30)</th>
<th>ГБ (n=44)</th>
<th>р/p1-2/p2-3/p1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мочевина крови, ммоль/л</td>
<td>8,2 (6,4; 10,6)</td>
<td>6,5 (5,6; 7,2)</td>
<td>6,8 (6,2; 7,6)</td>
<td><0,001/0,002/0,72/0,001</td>
</tr>
<tr>
<td>Креатинин крови, ммоль/л</td>
<td>108 (90; 125)</td>
<td>92 (82; 107)</td>
<td>88 (79; 103)</td>
<td><0,001/0,004/0,001/<0,001</td>
</tr>
<tr>
<td>СКФ C-G, мл/мин/1,73м²</td>
<td>66,8 (50,5; 92,0)</td>
<td>66,8 (35,0; 78,2)</td>
<td>77,0 (65,4; 92,4)</td>
<td>0,08/0,67/0,1/0,051</td>
</tr>
<tr>
<td>СКФ MDRD1, мл/мин/1,73м²</td>
<td>60,0 (47,1; 76,8)</td>
<td>48,3 (44,8; 70,8)</td>
<td>72,2 (62,8; 82,5)</td>
<td>0,004/0,44/0,009/0,002</td>
</tr>
<tr>
<td>СКФ MDRD2, мл/мин/1,73м²</td>
<td>61,9 (49,8; 77,4)</td>
<td>62,7 (46,7; 67,7)</td>
<td>68,3 (63,0; 84,7)</td>
<td>0,004/0,71/0,05/0,001</td>
</tr>
<tr>
<td>СКФ MDRDs, мл/мин/1,73м²</td>
<td>58,2 (46,9; 72,9)</td>
<td>59,0 (43,9; 63,7)</td>
<td>64,3 (59,2; 79,7)</td>
<td>0,004/0,71/0,05/0,001</td>
</tr>
<tr>
<td>СКФ CKD-EPI, мл/мин/1,73м²</td>
<td>61,3 (48,7; 77,7)</td>
<td>63,1 (45,0; 68,3)</td>
<td>70,5 (63,9; 85,6)</td>
<td>0,002/0,76/0,031/<0,001</td>
</tr>
</tbody>
</table>

р – Kruskal-Wallis test для сравнения трех независимых групп
р1-2 – Mann-Whitney U test для ХСНнФВ и ХСНсФВ
р2-3 - Mann-Whitney U test для ХСНсФВ и ГБ
р1-3- Mann-Whitney U test для ХСНнФВ и ГБ

Концентрация креатинина в сыворотке крови была нормальной (71-115 ммоль/л) у 63,64% больных с ХСНнФВ, всех пациентов с ХСНсФВ и
88,37% пациентов с ГБ. Повышение концентрации креатинина сыворотки крови выше нормы отмечено у 36,36% больных с ХСНнФВ и 11,63% пациентов с ГБ.

При использовании большинства различных методов оценки СКФ (кроме формулы Кокоффта-Голта) выявлено, что у больных с ХСНнФВ функция почек достоверно хуже, чем у больных с ГБ. Но при этом СКФ при ХСНнФВ и ХСНсФВ достоверно не различались (Таблица 3.4).

Причем значения СКФ, рассчитанные по формуле CKD-EPI во всех группах пациентов были достоверно ниже, чем при расчете по формулам Кокоффта-Голта и 4-компонентной формуле MDRD (MDRD2), и выше, чем при расчете по формуле MDRDs(p<0,001). В то же время результаты определения СКФ по формуле CKD-EPI достоверно не отличались от СКФ, рассчитанной по 6-компонентной формуле MDRD(MDRD1), p=0,63. Корреляция значений СКФCKD-EPI со значениями СКФ, полученными при помощи различных формул MDRD, была сильнее, чем с CKFCSG: с CKFMDRD1sr=0,97, с СКФ MDRD1r=0,99, с CKFMDRDSr=0,99, с CKFCSGr=0,75, p<0,001 для всех г.

При повторном с интервалом в 3 месяца и более расчете СКФ по формуле CKD-EPI у больных с ХСНнФВ (n=100) отмечалось незначительное, но достоверное снижение значений СКФ [c61,3 (48,7; 77,7)до 60,7 (49,5; 74,6) мл/мин/1,73м2, p=0,03]. С учетом этого, распределение больных в соответствии с современной классификацией стадий ХБП [66] представлено на рисунке3.1 и в Таблице 3.5.

Рисунок 3.1.

Таблица 3.5. Распределение больных по стадиям ХБП в соответствии с уровнем СКФ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ХСНнФВ (n=212)</th>
<th>ХСНсФВ (n=30)</th>
<th>ГБ (n=44)</th>
</tr>
</thead>
<tbody>
<tr>
<td>С1, %</td>
<td>10,7</td>
<td>6,7</td>
<td>16,3</td>
</tr>
<tr>
<td>С2, %</td>
<td>42,7</td>
<td>66,6</td>
<td>65,1</td>
</tr>
</tbody>
</table>
Больные с ХСНнФВ с более выраженными стадиями ХБП были старше, имели большую выраженность клинической симптоматики ХСН, большую длительность и тяжесть АГ в анамнезе, большую выраженность ГЛЖ, диастолической дисфункции миокарда ЛЖ, легочной гипертензии, кальцинова клапанов сердца (р<0,05, Таблица 3.6). ХСН у больных с более тяжелой ХБП чаще имела ишемическую этиологию, они чаще имели сопутствующий сахарный диабет (р<0,05). Была отмечена худшая переносимость физических нагрузок, более низкие значения концентрации гемоглобина и альбумина в крови, более высокие значения концентрации мочевой кислоты и С-реактивного белка в сыворотке крови, большая ЭАМ у больных с ХСНнФВ при 3-4стадиях ХБП в сравнении с пациентами с 1-2 стадиями ХБП (р<0,05).

Таблица 3.6. Сравнительный анализ больных с ХСНнФВ с ХБП 1-2 стадий и ХБП 3а, 3б, 4 стадий (СКД-ЕПИ).

<table>
<thead>
<tr>
<th>Параметр</th>
<th>ХБП 1-2 стадий (n=97)</th>
<th>ХБП 3а, 3б, 4 стадий (n=93)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, годы</td>
<td>59 (51; 66)</td>
<td>68 (62,54 74,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>ФК NYHA: I, II, III, IV, %</td>
<td>6,32/38,95/41,05/13, 68</td>
<td>1,19/25/57,14/16,67</td>
<td>0,004*</td>
</tr>
<tr>
<td>Сумма баллов ШОКС</td>
<td>5 (4;7)</td>
<td>7 (4;11)</td>
<td>0,032</td>
</tr>
<tr>
<td>Эпистемология ХСН: ИБС/ГС/ДКМП, %</td>
<td>74,47/11,7/13,83</td>
<td>91,67/5,95/2,38</td>
<td>0,004*</td>
</tr>
<tr>
<td>Длительность АГ в анамнезе, годы</td>
<td>8 (0; 20)</td>
<td>13 (5; 20)</td>
<td>0,009</td>
</tr>
<tr>
<td>Мах САД в анамнезе, мм рт.ст.</td>
<td>170 (130; 200)</td>
<td>180 (165; 210)</td>
<td>0,003</td>
</tr>
<tr>
<td>Измерение</td>
<td>Группа 1</td>
<td>Группа 2</td>
<td>p-значение</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Мощность выполненной нагрузки, Вт</td>
<td>96 (77,5; 123)</td>
<td>60 (60; 96)</td>
<td>0,027</td>
</tr>
<tr>
<td>МЕТ</td>
<td>4,2 (2,5; 5,6)</td>
<td>2,3 (1,5; 3,9)</td>
<td>0,002</td>
</tr>
<tr>
<td>Тмжп, см</td>
<td>1,07 (0,81; 1,27)</td>
<td>1,18 (1,04; 1,37)</td>
<td>0,009</td>
</tr>
<tr>
<td>Тзс, см</td>
<td>1,12 (1,0; 1,33)</td>
<td>1,22 (1,11; 1,39)</td>
<td>0,021</td>
</tr>
<tr>
<td>ИММ ЛЖК, г/м2</td>
<td>193,6 (168,3; 229,8)</td>
<td>209,3 (166,9; 275,8)</td>
<td>0,10</td>
</tr>
<tr>
<td>Тип ДД: 1/2/3, %</td>
<td>73,68/5,26/21,05</td>
<td>35,48/35,48/29,03</td>
<td>0,016*</td>
</tr>
<tr>
<td>E/E’бок</td>
<td>5,0 (4,14 6,3)</td>
<td>6,0 (5,3; 7,7)</td>
<td>0,043</td>
</tr>
<tr>
<td>E/E’мжп</td>
<td>6,2 (4,8; 6,8)</td>
<td>7,5 (6,7; 9,2)</td>
<td>0,043</td>
</tr>
<tr>
<td>E/E’сред</td>
<td>5,5 (4,3; 6,2)</td>
<td>6,7 (5,9; 7,8)</td>
<td>0,025</td>
</tr>
<tr>
<td>СДЛА, мм рт.ст.</td>
<td>33,9 (28,2; 40,2)</td>
<td>37,9 (31,4; 54,3)</td>
<td>0,033</td>
</tr>
<tr>
<td>Кальциноз Ao: 0/1/2, %</td>
<td>18,2/78,8/3,0</td>
<td>8,3/77,1/14,6</td>
<td>0,046</td>
</tr>
<tr>
<td>Кальциноз AK: 0/1/2/3, %</td>
<td>54,5/45,5/0/0</td>
<td>23,4/55,3/14,9/6,4</td>
<td>0,001</td>
</tr>
<tr>
<td>Кальциноз МК: 0/1/2/3, %</td>
<td>48,5/45,5/6,0/0</td>
<td>23,4/55,3/17,0/4,3</td>
<td>0,008</td>
</tr>
<tr>
<td>Суммарный кальциноз сердца и аорты, баллы</td>
<td>0 (0;2)</td>
<td>2 (2;3)</td>
<td><0,001</td>
</tr>
<tr>
<td>Гемоглобин крови, г/л</td>
<td>149 (139; 160)</td>
<td>142 (131; 151)</td>
<td>0,008</td>
</tr>
<tr>
<td>Лимфоциты, %</td>
<td>26 (20,2; 32,6)</td>
<td>17,3 (11,8; 25)</td>
<td>0,004</td>
</tr>
<tr>
<td>ЭАМ ИТДА, мг/сут</td>
<td>41 (26,9; 56,1)</td>
<td>61,1 (41,6; 136,5)</td>
<td>0,009</td>
</tr>
<tr>
<td>Альбумин, г/л</td>
<td>42,5 (39; 46)</td>
<td>41 (37; 44)</td>
<td>0,049</td>
</tr>
<tr>
<td>Мочевая кислота, мкмоль/л</td>
<td>377 (333; 419)</td>
<td>501,5 (413; 606)</td>
<td><0,001</td>
</tr>
<tr>
<td>Общий белок, г/л</td>
<td>73 (69; 77)</td>
<td>69 (65; 73)</td>
<td><0,001</td>
</tr>
<tr>
<td>С-реактивный белок, мг/л</td>
<td>4,4 (0,1; 20)</td>
<td>7,7 (3,1; 20)</td>
<td>0,08</td>
</tr>
<tr>
<td>Наличие СД: 0/1, %</td>
<td>91,4/8,6</td>
<td>67,9/32,1</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Альбуминурия у больных с хронической сердечной недостаточностью

Суточная альбуминурия (ИТДА) при ХСНиФВ достоверно превышала альбуминурию при ГБ (p=0,038). Концентрация альбумина в утренней порции мочи (ИФА) при ГБ была несколько выше, чем при ХСН-
Однако отношение альбумин/креатинин в утренней порции мочи (ИФА) у пациентов с ХСНнФВи ГБ достоверно не отличались (Таблица 3.7).

Таблица 3.7. Экскреция альбумина с мочой (ЭАМ) у больных с ХСН и ГБ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ХСНнФВ (n=88)</th>
<th>ГБ (n=35)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Альбумин ИФА/креатинин, мг/г</td>
<td>15,9 (5,8; 43,2)</td>
<td>38,8 (18,1; 67,0)</td>
<td>0,49</td>
</tr>
<tr>
<td>ЭАМ ИТДА, мг/сутки</td>
<td>47,2 (33,0; 70,0)</td>
<td>36,6 (17,3; 65,2)</td>
<td>0,038</td>
</tr>
</tbody>
</table>

По результатам оценки суточной ЭАМ, у больных с ХСНнФВ реже, чем при ГБ отмечался оптимальный А0 и повышенный нормальный А1 уровни альбуминурии, чаще встречалась высокая альбуминурия (уровень А2, микроальбуминурия), у 5% больных была выявлена очень высокая альбуминурия (уровень А3, макроальбуминурия, протеинурия), которая не была зарегистрирована при ГБ. Нефротического уровня альбуминурии (А4) у обследованных больных не было[66]. Распределение пациентов по тяжести альбуминурии представлено на рисунке 3.2 и в таблице 3.8.

Таблица 3.8. Распределение больных по уровню альбуминурии

<table>
<thead>
<tr>
<th>Показатель</th>
<th>ЭАМ</th>
<th>ХСНнФВ (n=88)</th>
<th>ГБ (n=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ИФА, мг/г</td>
<td>ИТДА, мг/сут</td>
<td>ИФА, мг/г</td>
</tr>
<tr>
<td>А0</td>
<td><10</td>
<td>36,4%</td>
<td>1,2%</td>
</tr>
<tr>
<td>A1</td>
<td>10-29</td>
<td>25%</td>
<td>19,8%</td>
</tr>
<tr>
<td>A2</td>
<td>30-299</td>
<td>38,6%</td>
<td>74,1%</td>
</tr>
<tr>
<td>A3</td>
<td>300-1999</td>
<td>-</td>
<td>4,9%</td>
</tr>
</tbody>
</table>

Рисунок 3.2.

Обращает внимание, что у больных с ХСН при расчете отношения альбумин/креатинин выявляемость высокой и очень высокой альбуминурии была достоверно меньше, чем при оценке по абсолютной концентрации
альбумина в суточной моче (p<0,001). Следовательно, для оценки ЭАМ при ХСН в связи с большей чувствительностью предпочтительнее определять абсолютную концентрацию альбумина в суточной моче, а не отношение альбумин/креатинин в разовой порции мочи.

У всех пациентов с 1 стадией ХБП, была выявлена альбуминурия уровня A1 у 35% и A2 у 65%, которая явилась основанием для диагностики ХБП, несмотря на нормальные значения СКФ [66]. Среди пациентов с ХБП 2 стадии у 20% отмечалась альбуминурия уровня A1, у 66,7% - A2, у 5% - A3. У 8,3% пациентов с ХБП 2 стадии (1 пациент с ХСН и 4 больных с ГБ) была нормоальбуминурия (оптимальная ЭАМ). У первого при УЗ-исследовании была выявлена простая киста почки, наличие которой было учтено при постановке диагноза ХБП.

После компенсации явлений СН (n=57) достоверной положительной динамики СКФ и альбуминурии не выявлено (p>0,05).

Предикторы альбуминурии при ХСН

ЭАМ обратно коррелировала с СКФ (для суточной ЭАМ и СКФ МДРД1г= -0,27, p=0,018, СКФ СКД-ЕПИг= -0,27, p=0,015). СКФ была достоверно ниже у больных с ХСНнФВ с ЭАМ выше медианы (p=0,044, Рисунок 3.3).

Рисунок 3.3

С целью определения, является ли альбуминурия уровня A2 (микроальбуминурия) у больных с ХСН ранним признаком дисфункции почек, предшествующим снижению СКФ, были построены таблицы сопряженности уровня ЭАМ и степени снижения СКФ, результаты которых приведены в таблице 3.9 и на рисунке 3.4.

Рисунок 3.4

Таблица 3.9. Распределение больных с ХСНнФВ по уровням СКФ (СКД-ЕПИ) и суточной альбуминурии (ИТДА)
Как показано в таблице и на рисунке, у большинства больных с ХСНнФВ был уровень альбуминурии A2. Среди больных с альбуминурией A2 у 47,46% выявлялось снижение СКФ до 60-89 мл/мин/1,73м², у 27,12% СКФ была ниже 60 и у 8,47% СКФ была ниже 30 мл/мин/1,73м² соответственно. Это свидетельствует о том, что альбуминурия A2 (микроальбуминурия) у больных с ХСН не является ранним признаком повреждения почек.

У больных с альбуминурией A1 СКФ была выше, чем у пациентов с альбуминурией A2 и A3, различия были близки к достоверным [78,9 (61,8; 98,6) и 69,4 (50,7; 86,4) мл/мин/1,73 м², р=0,09; 79,7 (66,5; 100,6) и 67,8 (49,9; 85,8) мл/мин/1,73 м², р=0,057 соответственно]. Следовательно, альбуминурию уровня A1 (высокий нормальный уровень ЭАМ) можно рассматривать как более ранним признаком поражения почек при ХСН.

При сравнении групп больных с ХСНнФВ с альбуминурией уровня A0-1 и A2-3 у больных с более выраженной альбуминурией отмечались большие значения ИМТ, большая выраженность клинической симптоматики ХСН, большая длительность и тяжесть АГ в анамнезе, большая длительность ХСН в анамнезе, большая выраженность диастолической дисфункции миокарда ЛЖ (Таблица 3.10).

<table>
<thead>
<tr>
<th>Показатель.п(%)</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>С1</td>
<td>0(0)</td>
<td>5(31,25)</td>
<td>10 (16,95)</td>
<td>0(0)</td>
</tr>
<tr>
<td>С2</td>
<td>1(100)</td>
<td>9 (56,25)</td>
<td>28 (47,46)</td>
<td>3 (75)</td>
</tr>
<tr>
<td>С3а</td>
<td>0(0)</td>
<td>1(6,25)</td>
<td>16 (27,12)</td>
<td>0(0)</td>
</tr>
<tr>
<td>С3б</td>
<td>0(0)</td>
<td>1(6,25)</td>
<td>5 (8,47)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>С4</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Параметр</th>
<th>A0-1 (n=39)</th>
<th>A2-3 (n=73)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИМТ, кг/м²</td>
<td>26,3 (24,8; 29,1)</td>
<td>29,1 (25,9; 32,5)</td>
<td>0,019</td>
</tr>
<tr>
<td>Длительность ХСН, годы</td>
<td>2,5 (0,9; 4)</td>
<td>4 (2; 6)</td>
<td>0,005</td>
</tr>
<tr>
<td>СБ ШОКС</td>
<td>5 (4; 7)</td>
<td>6 (5; 12)</td>
<td>0,017</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Длительность АГ в анамнезе, годы</td>
<td>1,5 (0; 11)</td>
<td>13 (5; 20)</td>
<td>0,001</td>
</tr>
<tr>
<td>Макс САД, мм рт.ст.</td>
<td>160 (130; 180)</td>
<td>180 (160; 210)</td>
<td><0,001</td>
</tr>
<tr>
<td>Макс ДАД, мм рт.ст.</td>
<td>90 (80; 110)</td>
<td>100 (100; 110)</td>
<td><0,001</td>
</tr>
<tr>
<td>УИ, мл/м2</td>
<td>26,3 (21,8; 30,9)</td>
<td>22,4 (17,5; 28,1)</td>
<td>0,048</td>
</tr>
<tr>
<td>E/A</td>
<td>0,79 (0,65;2,14)</td>
<td>2,74 (2,38; 3,17)</td>
<td>0,008</td>
</tr>
<tr>
<td>E/E’</td>
<td>6,67 (4,61; 7,39)</td>
<td>9,3 (8; 9,6)</td>
<td>0,047</td>
</tr>
</tbody>
</table>

Таким образом, при ХСН часто повышается ЭАМ. У большинства больных с этим заболеванием имеется альбуминурия уровня А2. Наиболее чувствительным методом выявления альбуминурии является количественное определение суточной экскреции альбумина. Ранним признаком поражения почек как органа-мишенев можно считать альбуминурию уровня А1 (высокий нормальный уровень альбуминурии).

Ультразвуковая морфология почек у больных с ХСН

Длина, ширина, толщина почки, а также толщина паренхимы в среднем сегменте у обследованных больных не отличались от таковых у здоровых лиц. Однако отмечалось некоторое истончение паренхимы в области полюсов почек (Таблица 3.11).

Таблица 3.11. Размеры почек у больных с ХСН в сравнении с нормальными величинами.

<table>
<thead>
<tr>
<th>Размер почки</th>
<th>Больные с ХСН (n=120)</th>
<th>Здравые*</th>
<th>Здравые**</th>
<th>Здравые***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>L</td>
<td>10-12</td>
<td>7,5-12</td>
</tr>
<tr>
<td>Длина, см</td>
<td>10,7 (10,1-11,5)</td>
<td>11,0 (10,4-11,9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ширина, см</td>
<td>5,0 (4,6-6,0)</td>
<td>5,2 (4,8-5,7)</td>
<td>4,5-6,5</td>
<td>5,45±1,3</td>
</tr>
<tr>
<td>Толщина, см</td>
<td>5,5 (5,0-5,9)</td>
<td>5,5 (5,2-5,8)</td>
<td>3,5-4,5</td>
<td>3,63±0,5</td>
</tr>
</tbody>
</table>
Толщина паренхимы в среднем сегменте, см

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4 (1,2-1,6)</td>
<td>1,5 (1,4-1,7)</td>
<td>1,2-2,0</td>
</tr>
</tbody>
</table>

Толщина паренхимы в области полюсов, см

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,7 (1,5-1,8)</td>
<td>1,5 (1,4-1,7)</td>
<td>2,0-2,5</td>
</tr>
</tbody>
</table>

* нормальные ультразвуковые размеры показателей приведены по Игнашину Н.С., ** – Демидову В.Н., *** – Бурых М.П. [42].

Медиана расчетных значений объема почки у обследованных больных составила 160 (129-177) мл справа и 156 (137-182) мл слева. Медиана объема почки, определенного по методу дисков, была несколько выше (p<0,001): 166 (137-200) мл справа и 169 (147-210) мл слева.

Почечная гемодинамика

Линейные скорости кровотока (Vps, Ved) у большинства обследованных больных с ХСН были ниже, а пульсационный индекс (PI), индекс резистентности (RI) и систоло-диастолическое отношение (S/D) – выше, чем у здоровых лиц (Таблица 3.12). При сравнении значений этих показателей с нормальными значениями, приводимыми разными авторами, различия были высоко достоверны (p<0,001).

Таблица 3.12. Сравнительный анализ допplerометрических показателей в основном стволе ПА у больных с ХСН и у здоровых лиц.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Больные с ХСН (n=72)</th>
<th>Здоровые*</th>
<th>Здоровые**</th>
<th>Здоровые**</th>
<th>p<</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vps R, см/с</td>
<td>64,7 (55,2 77,2)</td>
<td>89,1±10</td>
<td>95±5</td>
<td>80±10</td>
<td>0,001</td>
</tr>
<tr>
<td>Vps L, см/с</td>
<td>62,2 (48,9 74,5)</td>
<td>87,7±10</td>
<td></td>
<td></td>
<td>0,001</td>
</tr>
<tr>
<td>Ved R, см/с</td>
<td>18,3 (14,7 22,6)</td>
<td>29,7±3,9</td>
<td>30±4</td>
<td>32±4</td>
<td>0,001</td>
</tr>
<tr>
<td>Ved L, см/с</td>
<td>17,3 (12,3 23,9)</td>
<td>29,7±4,4</td>
<td></td>
<td></td>
<td>0,001</td>
</tr>
<tr>
<td>Тамаксимальная скоростью</td>
<td>31,5 (24,6 35,7)</td>
<td>29,4 (21,7 36,8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI R</td>
<td>1,46 (1,26 1,75)</td>
<td>0,96±0,1</td>
<td>1,25 1,0±0,13 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI L</td>
<td>1,51 (1,29 1,88)</td>
<td>0,92±0,1</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI R</td>
<td>0,70 (0,66 0,75)</td>
<td>0,67±0,03</td>
<td>0,68 0,59±0,05 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI L</td>
<td>0,71 (0,66 0,77)</td>
<td>0,68±0,03</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/D R</td>
<td>3,48 (2,95 4,03)</td>
<td>3,2±0,5</td>
<td>3,2 2,53±0,32 0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/D L</td>
<td>3,48 (2,96 4,43)</td>
<td>3,2±0,3</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Суммарный общий минутный объемный кровоток (CO_kобщ) у обследованных больных составил 950 (727-1272) мл/мин или 853 (689-1132) мл/мин/1,73м², индекс суммарного общего минутного объемного кровотока (CI_kобщ) – 493 (398-654) мл/мин/м². Суммарный базальный минутный объемный кровоток (CO_kбаз) составил 596 (423-776) мл/мин или 541 (398-709) мл/мин/1,73м², индекс суммарного базального минутного объемного кровотока (CI_kбаз) – 313 (230-410) мл/мин/м². Т.е. у большинства обследованных больных минутный объемный кровоток был значительно ниже, чем у здоровых лиц (p<0,001, Таблица 3.13).

Таблица 3.13. Сравнительный анализ параметров объемного почечного кровотока в основном стволе ПА у больных с ХСН и у здоровых лиц.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Больные с ХСН (n=72)</th>
<th>Здоровые лица*</th>
<th>Здоровые лица**</th>
<th>Здоровые лица***</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_kобщRL, мл/мин</td>
<td>950 (727-1272)</td>
<td>-</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>CO_kобщRL, мл/мин/1,73м²</td>
<td>853 (689-1132)</td>
<td>1300</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Следует заметить, что одноименные параметры кровотока (линейного и объемного) в правой и левой почках высоко коррелировали между собой, что подтверждает отсутствие односторонних стенотических поражений ПА у обследованных больных (r=0,85; p<0,001).

Для выявления различных показателей, оказывающих влияние на параметры почечной гемодинамики, мы провели корреляционный анализ. Была выявлена отрицательная корреляция Ved с возрастом (r=-0,26, p=0,030 для правой ПА и r=-0,27, p=0,020 для левой ПА). Взаимосвязи линейных скоростей кровотока и индексов почечного сосудистого сопротивления с АД во время обследования и антропометрическими данными (рост, вес, ИМТ, показателями абдоминального ожирения) не было.

Линейные скорости кровотока и индексы периферического почечно-гемодинамического сопротивления коррелировали с показателями сократительной функции сердца. Ved и ТАМХ коррелировали с ФВ ЛЖ (Ved: r=-0,31, p=0,009 для правой и левой ПА; ТАМХ: r=-0,35, p=0,003 для правой ПА r=0,27, p=0,021 для левой ПА), RI и PI – с ударным и сердечным индексом (RI: r=-0,34, p=0,005 и r=-0,38, p=0,001 для правой почки; r=-0,29, p=0,016 и r=-0,38, p=0,001 для левой почки; PI: r=-0,37, p=0,002 и r=-0,36, p=0,003 для правой почки; r=-0,30, p=0,015 и r=-0,40, p<0,001 для левой почки).

Vps и в меньшей степени ТАМХ коррелировали с показателем активности РААС (Vps: r=-0,33, p=0,006 для правой ПА, r=-0,36, p=0,002 для левой ПА; ТАМХ: r=-0,26, p=0,033 для правой ПА, r=-0,28, p=0,017 для левой ПА).

RI и PI коррелировали с концентрацией мочевины и креатинина в сыворотке крови (RI:r=0,43, p<0,001 и r=0,33, p=0,005 для правой почки;
р=0,46, р<0,001 и r=0,47, р<0,001 для левой почки; PI: r=0,41, р<0,001 и r=0,30, р=0,012 для правой почки; r=0,46, р<0,016 и r=0,49, р<0,001 для левой почки). Ved, RI и PI, были взаимосвязаны с СКФ, рассчитанной по любой из использованных формул (Таблица 3.14).

Таблица 3.14. Корреляция параметров почечной гемодинамики с СКФ (n=72).

<table>
<thead>
<tr>
<th>Формула для расчета СКФ, мл/мин/1,73м²</th>
<th>r (p)</th>
<th>Ved</th>
<th>RI</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кокрофта-Голта</td>
<td>0,35 (0,003)</td>
<td>-0,42 (<0,001)</td>
<td>-0,39 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>MDRD1</td>
<td>0,47 (<0,001)</td>
<td>-0,55 (<0,001)</td>
<td>-0,52 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>MDRD2</td>
<td>0,33 (0,004)</td>
<td>-0,50 (<0,001)</td>
<td>-0,50 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>MDRDs</td>
<td>0,33 (0,004)</td>
<td>-0,50 (<0,001)</td>
<td>-0,50 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>CKD-EPI</td>
<td>0,35 (0,003)</td>
<td>-0,49 (<0,001)</td>
<td>-0,48 (<0,001)</td>
<td></td>
</tr>
</tbody>
</table>

Индексы периферического почечного сосудистого сопротивления также коррелировали с экскрецией альбумина с мочой (ИТДА и ИФА) (RI: r=0,32, р=0,006 и r=0,25, р=0,049 для правой почки, r=0,37, р=0,001 и r=0,31, р=0,009 для левой почки; PI marijuana, r=0,27, р=0,022 и r=0,26, р=0,032 для правой почки, r=0,34, р=0,004 и r=0,33, р=0,005 для левой почки).

Параметры объемного почечного кровотока, как и традиционно определяемые при допплерографии показатели, слабо коррелировали с возрастом и ИМТ (COкобазRL: r=-0,35, р=0,003 и r=-0,28, р=0,017; COкобщRL: r=-0,26, р=0,030 и r=-0,26, р=0,029), а также - с цифрами систолического АД (для COкобщRL: r=0,25, р=0,033). Параметры объемного почечного кровотокакоррелировали с ФВ ЛЖ (COкобазRL: r=0,43, р<0,001; COкобщRL: r=0,45, p<0,001) и ударным индексом (COкобазRL: r=0,33, р=0,006; COкобщRL: r=0,26, р=0,032). С сердечным индексом коррелировали только параметры базального,но не общего, почечного кровотока (COкобазRL: r=0,27, p=0,027). Это согласуется с данными о том, что почечный кровоток у больных с ХСН меньше зависит от показателей центральной гемодинамики, чем кровоток в других органах.
VTIkбаз, COkбазRL и COkобщRL слабо, но достоверно коррелировали с объемом почки, определенным по методу Симпсона (r=0,25, p=0,031; r=0,27, p=0,023 и r=0,28, p=0,018 соответственно).

Несколько слабее, чем индексы почечного сосудистого сопротивления, параметры объемного почечного кровотока коррелировали с концентрацией мочевины и креатинина в сыворотке крови (COkбазRL: r=−0,38, p=0,001 и r=−0,27, p=0,024; COкобщRL: r=−0,31, p=0,008 и r=−0,27, p=0,021). Кроме того, параметры объемного почечного кровотока, особенно базального, коррелировали с СКФ и ЭАМ (Таблица 3.15, 3.16).

Таблица 3.15. Корреляция параметров объемного почечного кровотока с СКФ (n=72).

<table>
<thead>
<tr>
<th>Формула для расчета СКФ, мл/мин/1,73м²</th>
<th>r (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COkбазRL</td>
</tr>
<tr>
<td>Кокрофта-Голта</td>
<td>0,37 (0,002)</td>
</tr>
<tr>
<td>MDRD1</td>
<td>0,45 (<0,001)</td>
</tr>
<tr>
<td>MDRD2</td>
<td>0,32 (0,007)</td>
</tr>
<tr>
<td>MDRDs</td>
<td>0,32 (0,007)</td>
</tr>
<tr>
<td>CKD-EPI</td>
<td>0,35 (0,003)</td>
</tr>
</tbody>
</table>

Таблица 3.16. Корреляция параметров объемного почечного кровотока с ЭАМ (n=72).

<table>
<thead>
<tr>
<th>Параметр</th>
<th>r (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ДСПА: базальный объемный по-</td>
<td>ЭАМ (ИФА)</td>
</tr>
<tr>
<td>чечный кровоток</td>
<td>ЭАМ (ИТДА)</td>
</tr>
<tr>
<td>VTIkбазR, м</td>
<td>-0,38 (0,001)</td>
</tr>
<tr>
<td>SIкбазR, мл/м²</td>
<td>-0,38 (0,001)</td>
</tr>
<tr>
<td>СIкбазR, л/мин/м²</td>
<td>-0,31 (0,009)</td>
</tr>
<tr>
<td>VTIkбазL, м</td>
<td>-0,38 (<0,001)</td>
</tr>
<tr>
<td>SIкбазL, мл/м²</td>
<td>-0,44 (<0,001)</td>
</tr>
<tr>
<td>СIкбазL, л/мин/м²</td>
<td>-0,35 (0,003)</td>
</tr>
<tr>
<td>ДСПА: COкобщR, м</td>
<td>-0,34 (0,004)</td>
</tr>
</tbody>
</table>

Формула для расчета СКФ, мл/мин/1,73м²:

COkбазRL \times 0,37 (0,002) = COкобщRL \times 0,26 (0,030)
<table>
<thead>
<tr>
<th>Общий объемный почечный кровоток</th>
<th>$SI_{R_{b}}$, мл/м²</th>
<th>-0,36 (0,002)</th>
<th>Н.д.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CI_{R_{b}}$, л/мин/м²</td>
<td>-0,31 (0,008)</td>
<td>Н.д.</td>
<td></td>
</tr>
<tr>
<td>$VT_{L_{b}}$, м</td>
<td>-0,31 (0,009)</td>
<td>-0,26 (0,028)</td>
<td></td>
</tr>
<tr>
<td>$SI_{L_{b}}$, мл/м²</td>
<td>-0,39 (<0,001)</td>
<td>Н.д.</td>
<td></td>
</tr>
<tr>
<td>$CI_{L_{b}}$, л/мин/м²</td>
<td>-0,30 (0,011)</td>
<td>Н.д.</td>
<td></td>
</tr>
</tbody>
</table>

Для уточнения взаимосвязи альбуминурии и кровотока в почках мы оценили различия почечной гемодинамики в группах больных, выделенных по медиане значения ЭАМ. При использовании метода ИФА у больных с концентрацией альбумина в моче большемедианы (≥22,2 мг/л) значения параметров базального и общего почечного объемного кровотока в основном стволе ПА были ниже, чем у остальных (Таблица 3.17). При использовании метода ИТДА у больных с большей ЭАМ (≥47,2 мг/сутки) суммарный базальный почечный кровоток тоже был достоверно ниже, чем у остальных пациентов (Рисунок 3.5). Кроме того, у первых были выше значения RI в основном стволе ПА (р=0,042 и р=0,022 для правой и левой ПА соответственно) (Рисунок 3.6). Таким образом, у обследованных больных с ХСН был отмечен параллелизм показателей почечной гемодинамики с проявлениемами дисфункции почек.

Рисунок 3.5

Рисунок 3.6

Таблица 3.17. Объемный базальный и общий суммарный почечный кровоток и плазмоток в группах больных с ЭАМ (ИФА) <22,2 (1 группа) и ≥22,2 мг/сутки (2 группа).

<table>
<thead>
<tr>
<th>Параметр</th>
<th>1 группа (n=34)</th>
<th>2 группа (n=38)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CO_{b_{a_{3}}}$, мл/мин</td>
<td>652,1 (492,0 857,2)</td>
<td>451,0 (360,6 589,3)</td>
<td>0,009</td>
</tr>
<tr>
<td>$CI_{b_{a_{3}}}$, мл/мин/1,73м²</td>
<td>598,4 (465,6 775,5)</td>
<td>423,9 (328,3 589,3)</td>
<td>0,007</td>
</tr>
<tr>
<td>$CO_{b_{o_{3}}}$, мл/мин</td>
<td>1067,1 (836,5 1333,1)</td>
<td>791,5 (616,2 1167,8)</td>
<td>0,017</td>
</tr>
<tr>
<td>$CI_{b_{o_{3}}}$, мл/мин/1,73м²</td>
<td>981,5 (779,8 1168,4)</td>
<td>753,3 (563,2 1017,9)</td>
<td>0,021</td>
</tr>
</tbody>
</table>
У больных с СКФ ниже 60 мл/мин/1,73м² минутный объемный почечный кровоток, особенно базальный, был достоверно ниже, чем у больных с большими значениями СКФ (Рисунок 3.7). Это позволило нам предположить, что можно определить значения суммарного базального и общего почечного кровотока, характерные для снижения СКФ<60 мл/мин/1,73м², и использовать их для диагностики дисфункции почек у больных с ХСН.

Рисунок 3.7

Мы оценили диагностическую точностьPARAMETERS ДСПА для выявления дисфункции почек у больных с ХСН. Оказалось, что снижение значений суммарного общего минутного объемного кровотока (COкобщRL) ниже медианы (853 мл/мин/1,73м²) предсказывает вероятность снижения СКФ (MDRD1) ниже 60 мл/мин/1,73 м² с чувствительностью 85,7% и специфичностью 65,3%. Снижение значений суммарного базального минутного объемного кровотока (COкбазRL) ниже медианы (541 мл/мин/1,73м²) предсказывает вероятность снижения СКФ (MDRD1) ниже 60 мл/мин/1,73м² с той же чувствительностью 85,7%, но несколько меньшей специфичностью 62,5%.

Поскольку у больных со снижением СКФ, соответствующим 3 стадии ХБП, было выявлено резкое снижение объемного почечного кровотока, мы предположили, что специфичность значений параметров почечного кровотока, характерных для такого уровня СКФ, будет большей. Медиана значений суммарного общего почечного кровотока у больных с 3-й стадией ХБП, рассчитанной по формуле MDRD1, составила 685 (554-758), а базального – 343 (282-431) мл/мин/1,73м². Действительно, снижение значений суммарного общего минутного объемного кровотока (COкобщRL) ниже 685 мл/мин/1,73м² предсказывало вероятность снижения СКФ (MDRD1) ниже 60 мл/мин/1,73 м² с чувствительностью 57,1% и специфичностью 89,4%. Снижение значений суммарного базального минутного объемного кровотока (COкбазRL) ниже 343 мл/мин/1,73м² предсказывало вероятность сни-
жения СКФ (MDRD1) ниже 60 мл/мин/1,73м² с несколько меньшей чувствительностью 47,6%, но практически с той же специфичностью 89,6%.

Следовательно, снижение суммарного общего минутного объемного кровотока (COₖобщRL) ниже 853 мл/мин/1,73м² или суммарного базального минутного объемного кровотока (COₖбазRL) ниже 541 мл/мин/1,73м² могут свидетельствовать о наличии у больного дисфункции почек. Более низкие значения этих показателей более специфичны для значимого снижения СКФ, но обладают меньшей диагностической чувствительностью. На наш взгляд, приведенные значения объемного почечного кровотока можно использовать в качестве одного из критериев диагностики дисфункции почек при ХСН.

Взаимосвязь проявлений дисфункции почек с выраженностью клинической симптоматики

Изучение взаимосвязи изменений почечной гемодинамики и функционального состояния почек с выраженностью клинической симптоматики проводилось у больных, существенно различавшихся по своим функциональным возможностям. Функциональный класс ШОКС и NYHA, которые являются объективными характеристиками выраженности клинической симптоматики у больных с ХСН, не всегда совпадали в связи с тем, что последний определяется только на основании переносимости физических нагрузок и не учитывает физиологических данных. Однако между этими величинами отмечалась сильная положительная корреляция (r=0,76, p<0,001). I ФК ШОКС диагностировался у 5,7% больных с ХСНнФВ, II ФК – у 42,9%, III ФК – у 24,3%, IV ФК – у 27,1% больных. При использовании классификации NYHAIV ФК диагностировался реже, а II и III ФК – чаще, чем при применении ШОКС. Но в целом различия между ФК NYHA и ФК ШОКС не были достоверными (p=0,62).

Показатели, влияющие на выраженность клинической симптоматики, были выявлены при проведении корреляционного анализа. Из показателей ЭХОкг с тяжестью клинической симптоматики были взаимосвязаны
ФВ, УИ и, в меньшей степени, СИ ЛЖ. Также с выраженностью симптоматики достоверно коррелировали показатели азотвыделятельной функции почек, СКФ и экскреция альбумина с мочой (Таблица 3.18). Причем сила коэффициентов ранговой корреляции выраженности симптоматики с показателями работы сердца и почек была сопоставима (р>0,05).

Таблица 3.18. Взаимосвязь параметров ЭХОкг, функционального состояния почек, экскреции альбумина с мочой с выраженностью клинической симптоматикиу больных с ХСНиФВ (n=170).

<table>
<thead>
<tr>
<th>Параметр</th>
<th>(r) (p)</th>
<th>ФК (NYHA)</th>
<th>ФК (ШОКС)</th>
<th>Сумма баллов (ШОКС)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФВ ЛЖ, %</td>
<td>-0,28 (<0,001)</td>
<td>-0,44 (<0,001)</td>
<td>-0,44 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>УИ ЛЖ, мл/м2</td>
<td>-0,32 (<0,001)</td>
<td>-0,35 (<0,001)</td>
<td>-0,34 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>СИ ЛЖ, л/мин/м2</td>
<td>-0,15 (0,08)</td>
<td>-0,17 (0,07)</td>
<td>-0,18 (0,048)</td>
<td></td>
</tr>
<tr>
<td>Мочевина крови, ммоль/л</td>
<td>0,32 (<0,001)</td>
<td>0,29 (<0,001)</td>
<td>0,29 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>Креатинин крови, мкмоль/л</td>
<td>0,19 (0,01)</td>
<td>0,21 (0,005)</td>
<td>0,23 (0,002)</td>
<td></td>
</tr>
<tr>
<td>Экскреция альбумина с мочой (ИФА), мг/л</td>
<td>0,27 (0,01)</td>
<td>0,27 (0,01)</td>
<td>0,24 (0,023)</td>
<td></td>
</tr>
<tr>
<td>Отношение альбумин/креатинин (ИФА)</td>
<td>0,28 (0,016)</td>
<td>0,33 (0,005)</td>
<td>0,30 (0,011)</td>
<td></td>
</tr>
<tr>
<td>Экскреция альбумина с мочой (ИТДА), мг/сут</td>
<td>0,10 (0,36)</td>
<td>0,18 (0,11)</td>
<td>0,23 (0,041)</td>
<td></td>
</tr>
<tr>
<td>СКФ (MDRD1), мл/мин/1,73м2</td>
<td>-0,31 (<0,001)</td>
<td>-0,26 (0,001)</td>
<td>-0,27 (<0,001)</td>
<td></td>
</tr>
<tr>
<td>СКФ (MDRD2), мл/мин/1,73м2</td>
<td>-0,24 (<0,001)</td>
<td>-0,22 (0,004)</td>
<td>-0,23 (0,003)</td>
<td></td>
</tr>
<tr>
<td>СКФMDRDSs,</td>
<td>-0,24 (<0,001)</td>
<td>-0,22 (0,004)</td>
<td>-0,23 (0,003)</td>
<td></td>
</tr>
</tbody>
</table>
Распределение больных с различными ФК ХСНнФВ (n=191), оцененными с помощью NYHA, по уровню СКФ (СКД-EPI), приведено на рисунке 3.8. У всех больных с I ФК СКФ была выше 60 мл/мин/1,73м². У большинства больных IIФК СКФ была в диапазоне 60-89 мл/мин/1,73м², с III ФК – ниже 45-89 мл/мин/1,73м², IV ФК – ниже 60 мл/мин/1,73м². При расчете СКФ по другим формулам, а также разделении на ФК в соответствии с классификацией ШОКС были получены аналогичные результаты.

Рисунок 3.8

Больные с ХСНнФВ имели больший ФК NYHA, чем пациенты с ХСНсФВ (p=0,023). У больных с ХСНсФВ выявлена тенденция к взаимосвязи концентрации креатинина в сыворотке крови и ФК NYHA (r=0,46, p=0,08). Взаимосвязи СКФ и ФК NYHA при ХСНсФВ не было (p>0,05).

Распределение больных с различными ФК NYHA (n=112), по уровню экскреции альбумина с мочой (ИТДА) представлена на рисунке 3.9. Также у больных I ФК выявлялась альбуминурия уровня A1, A2 и A3. У 55,6% больных со II ФК, у 56,6% больных с III ФК, а также у 84,2% больных с IV ФК выявлялась альбуминурия уровня A2. Альбуминурия уровня A3 выявлялась у 25% (n=4) больных с I ФК, 4,4% больных – со II ФК и 6,5% больных с III ФК NYHA. При разделении больных по ФК в соответствии с классификацией ШОКС были получены похожие результаты. При оценке экскреции альбумина с мочой с помощью ИФА, альбуминурия уровня A2 тоже выявлялась у больных с различными ФК ХСН (NYHA и ШОКС).

Рисунок 3.9

Таким образом, несмотря на то, что по мере увеличения тяжести клинического состояния экскреция альбумина с мочой повышалась, патологические значения этого показателя были выявлены даже у больных с
ХСН I ФК, что говорит о необходимости скринингового определения ЭАМу всех больных с ХСН.

Функциональный статус больных также был связан с параметрами почечной гемодинамики (Таблица 3.19). Следует заметить, что параметры объемного почечного кровотока, как общего, так и базального, коррелировали с выраженностью клинической симптоматики даже лучше, чем параметры ЭХОкг и различия большинства коэффициентов корреляции были достоверны (р<0,05) или близки к достоверным.

Таблица 3.19. Взаимосвязь параметров почечной гемодинамики с тяжестью клинической симптоматикиу больных с ХСНнФВ (n=72)

<table>
<thead>
<tr>
<th>Параметр</th>
<th>ФК (NYHA)</th>
<th>ФК (ШОКС)</th>
<th>Сумма баллов (ШОКС)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>г (p)</td>
<td>г (p)</td>
<td>г (p)</td>
</tr>
<tr>
<td>ДСПА: ДС</td>
<td>Vps, см/с</td>
<td>-0,24 (0,045)</td>
<td>-0,26 (0,027)</td>
</tr>
<tr>
<td>ЛСК</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ved, см/с</td>
<td>-0,43 (<0,001)</td>
<td>-0,48 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>TAMX, см/с</td>
<td>-0,44 (<0,001)</td>
<td>-0,42 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>PI</td>
<td>0,37 (0,001)</td>
<td>0,36 (0,002)</td>
</tr>
<tr>
<td></td>
<td>RI</td>
<td>0,36 (0,002)</td>
<td>0,35 (0,003)</td>
</tr>
<tr>
<td>ДСПА: базальный объемный почечный кровоток</td>
<td>VTikбаз R, м</td>
<td>-0,61 (<0,001)</td>
<td>-0,64 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>SLkбаз R, мл/м²</td>
<td>-0,60 (<0,001)</td>
<td>-0,64 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>CLkбаз R, л/мин/м²</td>
<td>-0,46 (<0,001)</td>
<td>-0,54 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>VTikбаз L, м</td>
<td>-0,58 (<0,001)</td>
<td>-0,67 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>SLkбаз L, мл/м²</td>
<td>-0,58 (<0,001)</td>
<td>-0,72 (<0,001)</td>
</tr>
<tr>
<td></td>
<td>CLkбаз L, л/мин/м²</td>
<td>-0,46 (<0,001)</td>
<td>-0,59 (<0,001)</td>
</tr>
<tr>
<td>ДСПА:</td>
<td>VTikобщ R, м</td>
<td>-0,61 (<0,001)</td>
<td>-0,64 (<0,001)</td>
</tr>
<tr>
<td>Общий объем почечный кровоток</td>
<td>SIkобщR, мл/м²</td>
<td>-0,59 (<0,001)</td>
<td>-0,67 (<0,001)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CIkобщR, л/мин/м²</td>
<td>-0,45 (<0,001)</td>
<td>-0,56 (<0,001)</td>
<td>-0,52 (<0,001)</td>
</tr>
<tr>
<td>VTIkобщL, м</td>
<td>-0,52 (<0,001)</td>
<td>-0,60 (<0,001)</td>
<td>-0,57 (<0,001)</td>
</tr>
<tr>
<td>SIkобщL, мл/м²</td>
<td>-0,54 (<0,001)</td>
<td>-0,67 (<0,001)</td>
<td>-0,62 (<0,001)</td>
</tr>
<tr>
<td>CIkобщL, л/мин/м²</td>
<td>-0,43 (<0,001)</td>
<td>-0,56 (<0,001)</td>
<td>-0,54 (<0,001)</td>
</tr>
</tbody>
</table>

Для уточнения силы влияния наиболее взаимосвязанных с выраженностью клинической симптоматики из перечисленных параметров был создан ряд математических моделей. Оказалось, что сумма баллов ШОКС зависит от СКФ и объема крови, поступающего в основной ствол ПА за одно сердечное сокращение, больше, чем от ФВ, УИ и СИ ЛЖ (Таблица 3.20А-Г). Аналогичная модель была создана для ФК ШОКС.

Таблица 3.20. Зависимость суммы баллов ШОКС от параметров ЭХОкт, почечной гемодинамики и СКФу больных с ХСНнФВ

А: n=70, R=0,70, R²=0,49, F(3,65)=21,2, p<0,001, стандартная ошибка оценки модели 2,7

<table>
<thead>
<tr>
<th>Параметр</th>
<th>β</th>
<th>Стандартная ошибка</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIkобщR, мл/м²</td>
<td>-0,43</td>
<td>0,10</td>
<td><0,001</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>-0,26</td>
<td>0,10</td>
<td>0,013</td>
</tr>
<tr>
<td>СКФ MDRD1, мл/мин/1,73 м²</td>
<td>-0,24</td>
<td>0,09</td>
<td>0,010</td>
</tr>
</tbody>
</table>

Б: n=70, R=0,70, R²=0,49, F(3,66)=21,3, p<0,001, стандартная ошибка оценки модели 2,7

<table>
<thead>
<tr>
<th>Параметр</th>
<th>β</th>
<th>Стандартная ошибка</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIkобщR, мл/м²</td>
<td>-0,42</td>
<td>0,10</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФ MDRD1, мл/мин/1,73 м²</td>
<td>-0,28</td>
<td>0,09</td>
<td>0,002</td>
</tr>
</tbody>
</table>
ФВ ЛЖ, % | -0,26 | 0,10 | 0,014
---|---|---|---

В: n=70, R=0,69, R2=0,48, F(3,62)=18,7, p<0,001, стандартная ошибка оценки модели 2,8

<table>
<thead>
<tr>
<th>Параметр</th>
<th>β</th>
<th>Стандартная ошибка</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>СИк _баз RL, мл/м²</td>
<td>-0,50</td>
<td>0,10</td>
<td><0,001</td>
</tr>
<tr>
<td>СИ ЛЖ, %</td>
<td>-0,23</td>
<td>0,10</td>
<td>0,018</td>
</tr>
<tr>
<td>СКФ MDRD1, мл/мин/1,73 м²</td>
<td>-0,23</td>
<td>0,09</td>
<td>0,018</td>
</tr>
</tbody>
</table>

Г: n=70, R=0,70, R2=0,49, F(3,63)=20,4, p<0,001, стандартная ошибка оценки модели 2,7

<table>
<thead>
<tr>
<th>Параметр</th>
<th>β</th>
<th>Стандартная ошибка</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>СИк _общ RL, мл/м²</td>
<td>-0,50</td>
<td>0,09</td>
<td><0,001</td>
</tr>
<tr>
<td>СИ ЛЖ, %</td>
<td>-0,27</td>
<td>0,09</td>
<td>0,005</td>
</tr>
<tr>
<td>СКФ MDRD1, мл/мин/1,73 м²</td>
<td>-0,27</td>
<td>0,09</td>
<td>0,005</td>
</tr>
</tbody>
</table>

При добавлении в указанные модели ЭАМ (ИФА, ИТДА) достоверного влияния этого показателя на выраженность клинической симптоматики не отмечалось. При замене СИкRL на минутный объемный кровоток СIKRL все выявленные закономерности сохранялись. Следовательно, функциональное состояние почек и почечная гемодинамика значимы для выраженности клинической симптоматики, причем их значение не уступает, а параметров почечной гемодинамики даже превосходит значение функционального состояния сердца.

Для сравнения больных с ХСНиФВ с различной выраженностью клинической симптоматики выделены группы по медиане суммы баллов ШОКС, которая составила 6,0 (4,0 – 10,0). Больные, у которых сумма баллов ШОКС была меньше медианы, вошли в 1-ю; остальные – во 2-ю группу. Тщательный отбор больных, включенных в исследование, обеспечил сопоставимость этих групп по возрасту, антропометрическим данным, количеству инфарктов миокарда, длительности и выраженности артериаль-
ной гипертензии в анамнезе, длительности ХСН. У больных с большей выра женностью клинической симптоматики были ниже ФВ, УИ и СИ ЛЖ, СКФ, параметры общего и базального объемного почечного кровотока, TAMX и Ved, выше – PI, RI и S/D (Таблица 3.21, Рисунок3.10). У больных с большой выраженностью клинической симптоматики также отмечалась тенденция к большей ЭАМ (Рисунок3.11).

Рисунок 3.10

Рисунок 3.11

Таблица 3.21. Параметры ЭХОкг и почечной гемодинамики в группах больных с ХСНнФВ, выделенных по медиане суммы баллов ШОКС.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>1 группа (n=35)</th>
<th>2 группа (n=35)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЭХОкг</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УИ ЛЖ, мл/м²</td>
<td>25,8 (21,2; 32,0)</td>
<td>18,3 (16,4; 24,0)</td>
<td><0,001</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>31,0 (26,3; 37,4)</td>
<td>26,0 (20,0; 30,4)</td>
<td><0,001</td>
</tr>
<tr>
<td>ДСПА: ЛСК</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vps, см/с</td>
<td>66,0 (53,7; 84,2)</td>
<td>59,9 (47,2; 65,2)</td>
<td>0,032</td>
</tr>
<tr>
<td>Ved, см/с</td>
<td>21,8 (16,4; 26,7)</td>
<td>15,0 (10,9; 19,0)</td>
<td><0,001</td>
</tr>
<tr>
<td>TAMX, см/с</td>
<td>33,3 (26,9; 42,2)</td>
<td>26,7 (19,8; 32,6)</td>
<td><0,001</td>
</tr>
<tr>
<td>PI</td>
<td>1,46 (1,2; 1,64)</td>
<td>1,69 (1,42; 2,08)</td>
<td>0,002</td>
</tr>
<tr>
<td>RI</td>
<td>0,68 (0,63; 0,73)</td>
<td>0,75 (0,69; 0,79)</td>
<td>0,002</td>
</tr>
<tr>
<td>ДСПА: базальный ОПК</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTIkbagR, м</td>
<td>0,196 (0,173; 0,240)</td>
<td>0,113 (0,081; 0,146)</td>
<td><0,001</td>
</tr>
<tr>
<td>SIкbagR, мл/м²</td>
<td>2,9 (2,2; 3,6)</td>
<td>1,5 (1,1; 1,9)</td>
<td><0,001</td>
</tr>
<tr>
<td>CIкbagR, л/мин/м²</td>
<td>0,185 (0,150; 0,216)</td>
<td>0,113 (0,091; 0,139)</td>
<td><0,001</td>
</tr>
<tr>
<td>VTIkbagL, м</td>
<td>0,206 (0,159; 0,230)</td>
<td>0,117 (0,091; 0,146)</td>
<td><0,001</td>
</tr>
<tr>
<td>SIкbagL, мл/м²</td>
<td>2,9 (2,2; 3,7)</td>
<td>1,6 (1,2; 2,0)</td>
<td><0,001</td>
</tr>
</tbody>
</table>
После коррекции по показателям центральной гемодинамики в группах, нормированных по значениям ФВ, УИ и СИ ЛЖ, указанные различия параметров почечной гемодинамики и других проявлений дисфункции почек сохранялись (Таблица 3.22). Это может свидетельствовать о том, что выраженность клинической симптоматики при схожих характеристиках работы сердца у больных с ХСН определяется состоянием почечной гемодинамики и работой почек.

Таблица 3.22. Параметры почечной гемодинамики и ЭАМ в группах больных, выделенных по медиане суммы баллов ШОКС и нормированных по показателям центральной гемодинамики.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>1 группа (n=26)</th>
<th>2 группа (n=24)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ДСПА: VTІkбазR, м</td>
<td>0,182 (0,173; 0,222)</td>
<td>0,112 (0,090; 0,157)</td>
<td><0,001</td>
</tr>
<tr>
<td>СІkобшL, л/мин/м²</td>
<td>0,185 (0,160; 0,227)</td>
<td>0,113 (0,097; 0,159)</td>
<td><0,001</td>
</tr>
<tr>
<td>VTІkобшL, м</td>
<td>0,340 (0,284; 0,386)</td>
<td>0,207 (0,149; 0,245)</td>
<td><0,001</td>
</tr>
<tr>
<td>SLkобшR, мл/м²</td>
<td>4,7 (4,1; 6,0)</td>
<td>2,7 (2,2; 3,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>СІkобшL, л/мин/м²</td>
<td>0,308 (0,259; 0,348)</td>
<td>0,202 (0,149; 0,255)</td>
<td><0,001</td>
</tr>
<tr>
<td>VTІkобшL, м</td>
<td>0,322 (0,243; 0,370)</td>
<td>0,215 (0,163; 0,255)</td>
<td><0,001</td>
</tr>
<tr>
<td>SLkобшL, мл/м²</td>
<td>4,6 (3,7; 5,5)</td>
<td>2,6 (2,2; 3,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>СІkобшL, л/мин/м²</td>
<td>0,302 (0,255; 0,356)</td>
<td>0,206 (0,161; 0,259)</td>
<td><0,001</td>
</tr>
<tr>
<td>ДСПА: VTІkбазR, м</td>
<td>0,182 (0,173; 0,222)</td>
<td>0,112 (0,090; 0,157)</td>
<td><0,001</td>
</tr>
<tr>
<td></td>
<td>SI_{баз}R, мл/м²</td>
<td>CİK_{баз}R, л/мин/м²</td>
<td>VTI_{баз}L, м</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>базальный ОПК</td>
<td>2,8 (2,5; 3,5)</td>
<td>0,185 (0,172; 0,221)</td>
<td>0,203 (0,156; 0,218)</td>
</tr>
<tr>
<td></td>
<td>1,6 (1,2; 2,1)</td>
<td>0,115 (0,085; 0,152)</td>
<td>0,119 (0,104; 0,152)</td>
</tr>
<tr>
<td></td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
</tr>
<tr>
<td>ДСПА: общий ОПК</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTİ_{общ}R, м</td>
<td>0,313 (0,283; 0,360)</td>
<td>0,213 (0,157; 0,245)</td>
<td></td>
</tr>
<tr>
<td>SI_{общ}R, мл/м²</td>
<td>4,5 (3,8; 5,8)</td>
<td>2,7 (2,2; 3,5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0,001</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>VTİ_{общ}L, м</td>
<td>0,316 (0,226; 0,360)</td>
<td>0,224 (0,174; 0,273)</td>
<td></td>
</tr>
<tr>
<td>SI_{общ}L, мл/м²</td>
<td>4,5 (3,7; 5,2)</td>
<td>2,9 (2,2; 3,5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><0,001</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>ЭАМ (ИТДА), мг/сут</td>
<td>36,0 (30,0; 56,0)</td>
<td>50,0 (39,6; 114,0)</td>
<td></td>
</tr>
</tbody>
</table>

Для оценки взаимосвязи субъективной выраженности симптомов ХСНФВ с проявлениями дисфункции почек был проведен корреляционный анализ. Было выявлено, что экскреция альбумина с мочой, определенная с помощью ИТДА, коррелировала практически со всеми составляющими Канзасского опросника ($r=-0,29$, $p=0,012$ для суммы баллов, $r=-0,30$, $p=0,011$ для физической составляющей этого опросника), а ЭАМ, определенная с помощью ИФА, – с выраженностью одышки ($r=-0,29$, $p=0,012$). ЭАМ (ИФА) слабо коррелировала с выраженностью отеков ног и переносимостью ходьбы, по результатам заполнения опросника, используемого на кафедре ($r=0,25$, $p=0,03$ и $r=0,29$, $p=0,014$), а также – с выражен-
ностью отечности голеней и стоп \((r=0,26, p=0,023)\), ощущения нехватки воздуха \((r=0,29, p=0,014)\) и нарушения ночного сна \((r=0,30, p=0,011)\), по результатам заполнения Миннесотского опросника. ЭАМ (ИТДА) также коррелировала с выраженностью отечности голеней и стоп \((r=0,29, p=0,013)\) и потребностью отдыхать в течение дня \((r=0,24, p=0,042)\), по результатам заполнения Миннесотского опросника. ЭАМ (ИФА, ИТДА) коррелировала с суммой баллов Миннесотского опросника \((r=0,23, p=0,048)\) и с суммой балловой физической составляющей \((r=0,26, p=0,024)\).

С целью уточнения взаимосвязи ЭАМ и субъективной симптоматикой ХСН мы сравнили выраженность отеков, слабости, одышки и т.д. в группах больных, различающихся по степени альбуминурии. У больных с ХСНнФВ с большей ЭАМ (ИТДА) были сильнее выражены все симптомы ХСН – одышка, слабость, отеки ног, были значительно ниже общая сумма баллов и средний балл, а также сумма баллов и средний балл физической составляющей Канзасского опросника (Таблица 3.23).

Таблица 3.23. Субъективная выраженность симптоматики, по результатам заполнения Канзасского опросника, в группах больных ХСН-нФВ с ЭАМ (ИТДА) <47,2 (1 группа) и ≥47,2 мг/сутки (2 группа).

<table>
<thead>
<tr>
<th>Показатель</th>
<th>1 группа (n=35)</th>
<th>2 группа (n=35)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отеки</td>
<td>5 (4; 6)</td>
<td>4 (2; 6)</td>
<td>0,039</td>
</tr>
<tr>
<td>Слабость</td>
<td>4 (3; 5)</td>
<td>3 (2; 4)</td>
<td>0,049</td>
</tr>
<tr>
<td>Ночная одышка</td>
<td>5 (3; 5)</td>
<td>4 (1; 5)</td>
<td>0,021</td>
</tr>
<tr>
<td>Сумма баллов</td>
<td>83 (70; 99)</td>
<td>65 (47; 94)</td>
<td>0,018</td>
</tr>
<tr>
<td>Средний балл</td>
<td>3,6 (3,0; 4,3)</td>
<td>2,8 (2,0; 4,1)</td>
<td>0,018</td>
</tr>
<tr>
<td>Сумма баллов физической составляющей</td>
<td>56 (46; 63)</td>
<td>43 (25; 60)</td>
<td>0,016</td>
</tr>
<tr>
<td>Средний балл физической составляющей</td>
<td>4 (3,3; 4,5)</td>
<td>3,1 (1,8; 4,3)</td>
<td>0,015</td>
</tr>
</tbody>
</table>
У больных с ЭАМ (ИФА) ≥22,2 мг/л, как и в группах, выделенных по медиане ЭАМ (ИТДА), были более выражены отеки [4 (2; 5) и 5 (3; 5), p=0,023] и одышка [2 (2; 3) и 3 (2; 5), p=0,018], по данным Канзасского опросника. Большая выраженность отеков у этих больных подтверждалась результатами заполнения опросника, разработанного на кафедре [2 (1; 2) и 1 (1; 1), p=0,001] и Миннесотского [1 (0; 3) и 0 (0; 1), p=0,021], одышки – Миннесотского опросника [3 (1; 4) и 1 (0; 3), p=0,038].

СКФ (MDRD1, 2) коррелировала с выраженностью отеков (r=0,31, p=0,008 и r=0,26, p=0,026), одышки (r=0,31, p=0,008 и r=0,26, p=0,016) и слабости (r=0,31, p=0,008 и r=0,28, p=0,016), по результатам заполнения Канзасского опросника; одышки (r=-0,35, p=0,003 и r=-0,29, p=0,011) и слабости (r=-0,26, p=0,024 и r=-0,23, p=0,046), по результатам заполнения опросника, используемого на кафедре; отеков (r=-0,35, p=0,003 и r=-0,30, p=0,011) и ощущением нехватки воздуха (r=-0,28, p=0,016 и r=-0,24, p=0,041), по результатам заполнения Миннесотского опросника у больных с ХСНнФВ.

Параметры объемного почечного кровотока и, в меньшей степени, линейные скорости кровотока и внутрипочечные индексы сопротивления также были взаимосвязаны с субъективной выраженностью симптомов ХСНнФВ. Причем выраженность одышки, отеков и усталости коррелировали с параметрами объемного почечного кровотока не меньше (p>0,05), чем с УИ и ФВ ЛЖ (Таблица 3.24).

Таблица 3.24. Взаимосвязь параметров центральной и почечной гемодинамики с субъективной выраженностью симптомов ХСНнФВ.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Одышка*</th>
<th>Отеки**</th>
<th>Усталость**</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЭХОкт</td>
<td>УИ, мл/м²</td>
<td>-0,36(0,002)</td>
<td>-0,48(<0,001)</td>
</tr>
<tr>
<td>СИ, л/мин/м²</td>
<td>Н.д.</td>
<td>Н.д.</td>
<td>Н.д.</td>
</tr>
<tr>
<td>ФВ, %</td>
<td>-0,44(<0,001)</td>
<td>-0,37(<0,001)</td>
<td>Н.д.</td>
</tr>
<tr>
<td>ДСПА:</td>
<td>VTlKопR, м</td>
<td>-0,52(<0,001)</td>
<td>-0,51(<0,001)</td>
</tr>
<tr>
<td></td>
<td>SIкбазR, мл/м²</td>
<td>CIкбазR, л/мин/м²</td>
<td>VTIkбазL, м</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Базальный объемный почечный кровоток</td>
<td>-0,50(<0,001)</td>
<td>-0,47(<0,001)</td>
<td>-0,46(<0,001)</td>
</tr>
<tr>
<td>ДСПА: общий объемный почечный кровоток</td>
<td>-0,51(<0,001)</td>
<td>-0,52(<0,001)</td>
<td>-0,44(<0,001)</td>
</tr>
</tbody>
</table>

* – по результатам заполнения опросника, используемого на кафедре; ** – по результатам заполнения Миннесотского опросника.

Для выяснения факторов, способствующих формированию ощущения одышки у больных с ХСНнФВ, больные были разделены на следующие группы: в 1-ю группу вошли больных без одышки или с одышкой только при быстрой ходьбе, по результатам заполнения опросника, используемого на кафедре, во 2-ю – с одышкой при ходьбе обычным шагом, при любом движении и в покое. СИ и УИ ЛЖ у больных 1 и 2 групп не различались (p>0,05). У больных с более выраженной одышкой была ниже ФВ ЛЖ, ниже значения всех рассмотренных выше параметров общего и базального объемного почечного кровотока, а также Ved и TAMХ. Хотя следует отметить, что больные 2 группы были старше, имели большие значения ИМТ и более высокие цифры систолического АД в анамнезе (Таблица 3.25). Эти данные показывают, что в генезе одышки у больных с ХСН наряду с из-
вестными факторами большое значение имеют функциональное состояние почек и почечная гемодинамика.

Таблица 3.25. Сравнительный анализ групп больных с ХСНнФВ, выделяемых по степени выраженности одышки.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>1 группа (n=44)</th>
<th>2 группа (n=26)</th>
<th>р</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, годы</td>
<td>59,0 (50,0; 65,0)</td>
<td>66,0 (55,5; 70,0)</td>
<td>0,048</td>
</tr>
<tr>
<td>ИМТ, кг/м²</td>
<td>25,9 (23,1; 29,2)</td>
<td>29,3 (26,1; 33,4)</td>
<td>0,004</td>
</tr>
<tr>
<td>САД в анамнезе, мм рт. ст.</td>
<td>160 (130; 185)</td>
<td>190 (138; 215)</td>
<td>0,035</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>30,6 (28,0; 37,0)</td>
<td>26,8 (20,0; 32,3)</td>
<td>0,004</td>
</tr>
<tr>
<td>Мочевина крови, ммоль/л</td>
<td>6,3 (4,5; 7,7)</td>
<td>8,0 (6,4; 9,1)</td>
<td>0,006</td>
</tr>
<tr>
<td>Креатинин крови, мкмоль/л</td>
<td>90,0 (76; 106)</td>
<td>102,5 (85,5; 125,5)</td>
<td>0,018</td>
</tr>
<tr>
<td>Мочевая кислота крови, мкмоль/л</td>
<td>372 (327; 418)</td>
<td>418 (366; 502)</td>
<td>0,012</td>
</tr>
<tr>
<td>СКФ (MDRD1), мл/мин/1,73м²</td>
<td>81,5 (65,4; 91,5)</td>
<td>66,6 (47,8; 84,8)</td>
<td>0,018</td>
</tr>
<tr>
<td>СКФ (MDRD2), мл/мин/1,73м²</td>
<td>77,6 (64,1; 95,1)</td>
<td>67,4 (49,7; 85,6)</td>
<td>0,036</td>
</tr>
<tr>
<td>Ved, см/с</td>
<td>19,1 (16,0; 25,3)</td>
<td>15,4 (11,0; 20,7)</td>
<td>0,018</td>
</tr>
<tr>
<td>TAMX, см/с</td>
<td>30,2 (26,7; 38,1)</td>
<td>27,0 (20,3; 36,1)</td>
<td>0,039</td>
</tr>
<tr>
<td>SIK₀ баз RL, мл/м²</td>
<td>5,3 (3,9; 7,2)</td>
<td>3,2 (2,4; 5,3)</td>
<td><0,001</td>
</tr>
<tr>
<td>COK₀ баз RL, л/мин/1,73м²</td>
<td>0,681 (0,521; 0,776)</td>
<td>0,433 (0,310; 0,550)</td>
<td><0,001</td>
</tr>
<tr>
<td>SIK₀ общ RL, мл/м²</td>
<td>8,7 (6,9; 11,1)</td>
<td>5,8 (4,3; 8,1)</td>
<td><0,001</td>
</tr>
<tr>
<td>COK₀ общ RL, л/мин/1,73м²</td>
<td>1,116 (0,838; 1,168)</td>
<td>0,769 (0,585; 0,962)</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Взаимосвязь проявлений дисфункции почек с переносимостью физических нагрузок у больных с ХСН

Работа и мощность выполненной нагрузки, рассчитанная на единицу массы тела, коррелировали с экскрецией альбумина с мочой СКФ у больных с ХСНнФВ(Таблица3.26). Это подтверждает данные о взаимосвязи
Сравнительный анализ проявлений дисфункции почек в зависимости от этиологии ХСН

Поскольку обследованные больные различались по заболеваниям, приведшим к развитию и прогрессированию ХСН, целесообразно провести сравнительный анализ влияния этиологии сердечной недостаточности на изучаемые параметры.

У 80,9% обследованных больных была ХСН ишемической (вследствие перенесенного инфаркта миокарда), у 19,1% пациентов-неишемической этиологии (вследствие дилатационной кардиомиопатии или...
гипертонического сердца IV ст). Эти пациенты не отличались по степени снижения систолической функции ЛЖ (р=0,14). Больные с ишемическим генезом заболевания были старше остальных, имели большую выраженность абдоминального ожирения, продолжительность артериальной гипертензии и более высокие цифры АД в анамнезе (р<0,05). Достоверных различий по показателям ЭХОкт, уровню ЭАМ (ИФА, ИТДА), параметрам почечной гемодинамики между больными с ишемическим и неишемическим генезом ХСН не было (р>0,05). При этом у больных с ишемической природой ХСН значения СКФ, рассчитанные по любой из приведенных выше формул, были ниже, чем у больных с неишемической природой ХСН (Таблица 3.27). Причем различия по СКФ сохранялись в группах, нормированных по возрасту [MDRD1: 70 (57; 86) и 88 (65; 99), р=0,038, MDRD2: 68 (58; 86) и 90 (64; 101), р=0,047; n=42 и 14 соответственно]. Следовательно, для ишемической этиологии ХСНФВ более характерно снижение СКФ, чем для неишемической. При этом побочных взаимосвязей при ХСНсФВ выявлено не было (р>0,05).

Таблица 3.27. Сравнительный анализ больных с ишемическим (1 группа) и неишемическим (2 группа) генезом ХСНФВ

<table>
<thead>
<tr>
<th>Параметр</th>
<th>1 группа (n=154)</th>
<th>2 группа (n=35)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, годы</td>
<td>66 (58; 71)</td>
<td>55,5 (44,5; 61)</td>
<td><0,001</td>
</tr>
<tr>
<td>Индекс талия/бедро</td>
<td>0,98 (0,92; 1,0)</td>
<td>0,92 (0,90; 0,94)</td>
<td>0,006</td>
</tr>
<tr>
<td>Длительность АГ в анамнезе, годы</td>
<td>12 (3; 20)</td>
<td>4,0 (0; 10)</td>
<td><0,001</td>
</tr>
<tr>
<td>Мах САД в анамнезе, мм рт. ст.</td>
<td>180 (160; 200)</td>
<td>160 (130; 190)</td>
<td>0,004</td>
</tr>
<tr>
<td>Мах ДАД в анамнезе, мм рт. ст.</td>
<td>100 (100; 110)</td>
<td>95 (80; 100)</td>
<td>0,011</td>
</tr>
<tr>
<td>Креатинин крови, мкмоль/л</td>
<td>111,5 (95; 129)</td>
<td>96 (78; 115)</td>
<td>0,006</td>
</tr>
<tr>
<td>СКФ по Кокрофту-Голту,</td>
<td>63,7 (49,3; 82,3)</td>
<td>99,3 (66,6; 118)</td>
<td><0,001</td>
</tr>
</tbody>
</table>
У больных с ХСНнФВ выявлялась положительная корреляционная взаимосвязь времени, прошедшего после последнего ИМ, с ЭАМ (ИТДА): r=0,26, р=0,041. Взаимосвязи между временем, прошедшим после ИМ, и СКФ у обследованных больных не отмечалось. При этом количество ИМ было обратно взаимосвязано с СКФ, рассчитанной по различным формулам (r= -0,15, р=0,034 для MDRD2, r=−0,15, р=0,034 для MDRDs, r=−0,18, р=0,014 для CKD-EPI). Взаимосвязи между количеством инфарктов миокарда и параметрами почечной гемодинамики у обследованных больных не было. При ХСНсФВ указанных взаимосвязей не выявлено.

СКФ, рассчитанная по формулам MDRD и CKD-EPI, была достоверно ниже у больных с ХСНнФВ с артериальной гипертонией в анамнезе по сравнению с больными без нее. Экскреция альбумина с мочой (ИТДА) у больных с гипертонией в анамнезе была выше, чем в группе без нее (Таблица 3.28). Т.е. артериальная гипертония в анамнезе может являться фактором, способствующим развитию более выраженного повреждения почек у больных с ХСН.

Таблица 3.28. Сравнительный анализ проявлений дисфункции почек у больных с ХСНнФВ с (1 группа) и без артериальной гипертонии (2 группа) в анамнезе
Возраст, годы	66,0 (57,0; 72,0)	58,0 (49,0; 66,0)	<0,001
СКФ MDRD1, мл/мин/1,73м² | 58,1 (45,7; 70,9) | 68,7 (48,8; 87,3) | 0,016
СКФ MDRD2, мл/мин/1,73м² | 60,6 (49,7; 71,5) | 67,4 (53,4; 87,4) | 0,022
СКФ MDRDs, мл/мин/1,73м² | 56,9 (46,7; 67,2) | 63,4 (50,2; 82,2) | 0,022
СКФ CKD-EPI, мл/мин/1,73м² | 58,9 (47,4; 70,3) | 67,7 (51,7; 88,6) | 0,009
ЭАМ ИТДА, мг/сут | 50,0 (38,0; 75,0) | 35,0 (23,2; 42,5) | 0,007

Для подтверждения того, что ХСН может являться значимым факто-
ром, способным приводить к развитию дисфункции почек, независимо от
наличия АГ в анамнезе, мы рассмотрели больных с ХСНнФВ без гипертен-
зивного анамнеза. Альбуминурия (ИТДА) уровня А2 была выявлена у
41,4% из них, альбуминурия уровня А1 – у 48,3%. Оптимальный уровень
альбуминурии А0 был лишь у 10,3% больных с ХСНнФВ без АГ в анамне-
зе. Т.е. хотя частота встречаемости альбуминурии уровня А2 у больных с
артериальной гипертензиеи в анамнезе была несколько выше, чем без нее,
наличие «изолированной от артериальной гипертензии» сердечной недо-
статочности тоже часто сопровождалось повреждением почек и повыше-
нием ЭАМ.

СКФ (CKD-EPI) среди больных с ХСНнФВ без гипертензивного
анамнеза соответствовала 2 стадии ХБП у 45,5%, 3а стадии - у 20,5%, 3б –
у 9,1% и 4 стадии - у 4,4%. Нормальные значения СКФ были лишь у 20,5 %
этих больных. Тот факт, что у 79,5% больных без гипертензивного анамне-
за отмечалось снижение СКФ, подтверждает то, что наличие ХСН, в т.ч.
без АГ в анамнезе, может приводить к нарушению функции почек.

Среди больных с дилатационной кардиомиопатией (n=17) при оцен-
ке с помощью ИФА оптимальный уровень альбуминурии А0 был у 40%,
уровень А1 – у 20%, уровень А2-у 40%, при оценке с помощью ИТДА:
уровень А1 – у 75%, уровень А2 – у 25%, уровня А0 не было ни у кого из
больных. СКФ (CKD-EPI) среди больных с ХСНнФВ на фоне дилатацион-
ной КМП соответствовала 2 стадии ХБП у 47,0%, 3а стадии - у 11,8%, 3б –
у 5,9%. Нормальные значения СКФ были у 35,3% этих больных. Т.е. у
больных с ХСН неишемического генеза без артериальной гипертензии в анамнезе тоже нередко развивается дисфункция почек, что позволяет отнести ХСН к факторам риска и прогрессирования ХБП.

По параметрам объемного почечного кровотока, линейным скоростям кровотока и индексам почечного сосудистого сопротивления, а также почечному плазмотоку и значению фильтрационной фракции достоверных различий между больными с и без артериальной гипертензии в анамнезе не было. Также не было корреляции этих параметров с длительностью и тяжестью артериальной гипертензии в анамнезе. По параметрам гемодинамики с длительностью ХСН: для суммарных COкобщ и COкбаз: r=-0,29, p=0,015 и r=-0,35, p=0,003; для Ved и TAMX: r=-0,42, p<0,001 и r=-0,38, p=0,001; для RI и PI: r=0,29, p=0,015 и r=0,28, p=0,017. Это свидетельствует о том, что параметры почечной гемодинамики у больных с ХСН связаны с наличием, длительностью и выраженностью ХСН, а не с наличием и выраженностью артериальной гипертензии в анамнезе. По мере увеличения длительности ХСН скорости линейного и общего и базального объемного почечного кровотока снижаются, а индексы сопротивления – повышаются.

Взаимосвязь хронической болезни почек со структурными изменениями и систоло-диастолической дисфункцией миокарда левого желудочка у больных с хронической сердечной недостаточностью

Выявлена отрицательная взаимосвязь СКФ с толщиной миокарда левого желудочка (при расчете по CKD-EPI r=-0,17, p=0,023 для Тмжп; r=-0,19, p=0,008 для Тзс) и положительная – с конечно-диастолическим объемом левого желудочка (при расчете по Ccrocft-Gault r=0,22, p=0,005. СКФ также коррелировала с отношением E/Em (r=-0,48, p=0,013 для E/Em латеральной части ФКМК и СКФ Ccrocft-Gault; r=-0,48, p=0,008 для E/Em перегородочной части ФКМК и CKD-EPI; r=-0,47, p=0,009 для E/Em перегородочной части ФКМК и MDRD1 и MDRDs). СКФ была ниже у больных с
отношением E/Em выше медианы (>7,1) по сравнению с остальными (53,3 (41,0;56,9) и 65,4 (52,8;72,9) мл/мин/1,73м², р=0,030 для MDRD 1; 54,8 (42,8;58,0) и 65,2 (49,8;73,9) мл/мин/1,73м², р=0,042 для MDRD 2). Различий по альбуминурии между пациентами этих групп не было. При этом экскреция альбумина с мочой была выше у больных с фракцией выброса левого желудочка ниже медианы (<30,4%) по сравнению с остальными (30,4 (12,9;44,7) и 14,6 (3,2;23,0) мг/л, р=0,004; 34,4 (21,4;63,7) и 15,1 (4,8;16,2) мг/сут, р=0,002). Различий по СКФ между пациентами этих групп не было.

Таким образом, при ХСН систолическая дисфункция и дилатация левого желудочка взаимосвязаны преимущественно с повышением экскреции альбумина с мочой, тогда как диастолическая дисфункция, гипертрофия миокарда левого желудочка и дилатация предсердий – больше ассоциированы со снижением скорости клубочковой фильтрации.

Взаимосвязь фибрилляции предсердий и дисфункции почек у больных с хронической сердечной недостаточностью

Больные с синусовым ритмом, в т.ч. с редкими пароксизмами ФП в анамнезе, составили 1-ю группу, с постоянной формой ФП – 2-ю группу. Больные этих групп были сравнимы по полу и возрасту (62 (53-67) и 63 (55-67) лет, р>0,05).

При эхокардиографическом исследовании в группах с синусовым ритмом и ФП были выявлены сравнимые значения ФВ ЛЖ (28,3 (23,0-34,9) и 26,8 (22,0 и 32,0)%), р>0,05). При этом достоверно отличались размеры левого предсердия (ЛП) и правого желудочка (ПЖ). Другие показатели ЭХОкг не отличались.

Исследование симптоматики с помощью разработанного нами опросника не выявило различий по выраженности одышки, слабости, ощущению перебоев в работе сердца и сердцебиений у больных с СР и ФП. Единственный симптом, выраженность которого отличалась в этих
группах, был анатомический уровень отеков. Выраженность отеков при CR составила 1,0 (1,0-2,0), при ФП – 2,0 (1,0-2,0), р=0,043.

Поскольку в генезе отечного синдрома у больных с ХСН, помимо функционального состояния сердца, большую роль играет способность почек выводить избыточное количество внеклеточной жидкости, мы оценили у них СКФ, экскрецию альбумина с мочой и показатели почечного кровотока.

СКФ была выше (102,7 (97,8-108,2) и 98,5 (95,2 и 103,9) мл/мин/1,73м2, р=0,042), а ЭАМ (ИФА) ниже (16,7 (2,9-37) и 31,4 (17,3-44,7) мг/л, р=0,02) у больных с синусовым ритмом по сравнению с пациентами с постоянной формой ФП.

Линейные скорости почечного кровотока (Vps, Ved, TAMX), а также индексы почечного сосудистого сопротивления (PI, RI) достоверно не отличались у больных 1-й и 2-й групп. При этом такие показатели общего и базального почечного кровотока, как объем крови, поступающий в основной ствол почечной артерии в течение 1 сердечного цикла (SVk) и индекс этого объема (SIk), были достоверно выше у больных с синусовым ритмом, чем у больных с постоянной ФП (для базального SIkbas 2,3 (1,6-3,5) мл/м2 справа, 2,4 (1,7-3,3) мл/м2 слева и 1,6 (1,2-2,5) мл/м2 справа, 1,7 (1,2-2,3) мл/м2 слева соответственно; для общего SIkfull 4,0 (2,9-5,7) мл/м2 справа, 3,7 (3,1-5,1) слева и 2,5 (2,2-4,2) мл/м2 справа, 2,7 (2,2-3,7) мл/м2 соответственно, р<0,05).

Таким образом, наличие постоянной формы фибрилляции предсердий сопровождается большим нарушением почечной гемодинамики, снижением клубочковой фильтрации и большей частотой развития альбуминурии у больных с ХСН. Следовательно, фибрилляцию предсердий можно рассматривать в качестве предиктора поражения почек у больных с ХСН.

Динамика проявлений дисфункции почек у больных с ХСН при переходе из состояния декомпенсации в состояние компенсации
У декомпенсированных больных при переходе в состояние компенсации отмечалось достоверное уменьшение массы тела и выраженности симптомов ХСН, значительная динамика суммы баллов Канцераского, Миннесотского и разработанного на кафедре опросников выраженности симптоматики, снижение суммы баллов ШОКС и ФК NYHA. Фракция выброса ЛЖ при переходе в состояние компенсации увеличивалась, ударный и сердечный индексы достоверно не изменялись (Таблица 3.29).

Таблица 3.29. Динамика выраженности клинической симптоматики и показателей ЭХОкг при выходе из состояния декомпенсации (n=57)

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Декомпенсация</th>
<th>Компенсация</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФК NYHA</td>
<td>3,5 (3; 4)</td>
<td>3 (2; 3)</td>
<td><0,001</td>
</tr>
<tr>
<td>Сумма баллов ШОКС</td>
<td>12 (8; 13)</td>
<td>5 (4; 6)</td>
<td><0,001</td>
</tr>
<tr>
<td>Масса тела, кг</td>
<td>85,9 (73,5; 95,5)</td>
<td>81,0 (70,0; 89,2)</td>
<td><0,001</td>
</tr>
<tr>
<td>Одышка (*)</td>
<td>2 (1; 3)</td>
<td>3 (2; 4)</td>
<td>0,001</td>
</tr>
<tr>
<td>Отеки (*)</td>
<td>2,5 (1; 5)</td>
<td>5 (4; 6)</td>
<td>0,001</td>
</tr>
<tr>
<td>Слабость (*)</td>
<td>2 (1; 3)</td>
<td>3 (2; 4)</td>
<td>0,014</td>
</tr>
<tr>
<td>Сумма баллов КО (*)</td>
<td>55 (43; 77)</td>
<td>87 (68; 98)</td>
<td><0,001</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>24,6 (20,0; 30,3)</td>
<td>29,9 (28,3; 35,8)</td>
<td><0,001</td>
</tr>
</tbody>
</table>

* – по результатам заполнения Канцераского опросника (КО).

Среди обследованных у 2 больных была малая динамика выраженности симптоматики (изменение суммы баллов Канцераского опросника на ≥5), у 3 больных – умеренная (≥10 баллов), у остальных – выраженная (≥15 баллов). Медиана изменения суммы баллов Канцераского опросника составила 28 (12;44) баллов. Больные с более и менее выраженной динамикой симптоматики (изменением суммы баллов выше медианы – 1 группа и ниже нее – 2 группа) не различались по возрасту, этиологии и длительности ХСН, исходной выраженности клинической симптоматики, лекарственной терапии, показателям ЭХОкг и почечной гемодинамики при декомпенсации и после компенсации, исходным биохимическим параметрам крови и мочи. Однако у больных с более выраженной динамикой симптоматики при
компенсации была ниже концентрация креатинина и мочевой кислоты в сыворотке крови и выше СКФ (Таблица 3.30). На основании этих данных можно сделать вывод, что успех ведения больных с ХСН из состояния декомпенсации напрямую зависит от функции почек.

Таблица 3.30. Функциональное состояние почек у больных с более (1 группа) и менее (2 группа) выраженной динамикой клинической симптоматики при выходе из декомпенсации

<table>
<thead>
<tr>
<th>Показатели при компенсации</th>
<th>1 группа (n=11)</th>
<th>2 группа (n=11)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Креатинин крови, мкмоль/л</td>
<td>101 (86; 110)</td>
<td>112 (107; 116)</td>
<td>0,024</td>
</tr>
<tr>
<td>Мочевая кислота крови, мкмоль/л</td>
<td>397 (369; 431)</td>
<td>444 (413; 550)</td>
<td>0,014</td>
</tr>
<tr>
<td>СКФ (MDRD1), мл/мин/1,73м²</td>
<td>66,7 (63,4; 80,2)</td>
<td>53,1 (43,9; 62,4)</td>
<td>0,026</td>
</tr>
<tr>
<td>СКФ (MDRD2), мл/мин/1,73м²</td>
<td>70,4 (63,9; 77,2)</td>
<td>58,4 (47,2; 63,1)</td>
<td>0,006</td>
</tr>
<tr>
<td>СКФMDRDs, мл/мин/1,73м²</td>
<td>66,3 (60,2; 72,6)</td>
<td>54,9 (44,4; 59,3)</td>
<td>0,005</td>
</tr>
<tr>
<td>СКФCKD-EPI, мл/мин/1,73м²</td>
<td>67,8 (63,1; 79,0)</td>
<td>56,4 (45,5; 58,4)</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Достоверной однонаправленной динамики концентрации азотсодержащих веществ в сыворотке крови и значений СКФ, рассчитанных по различным формулам, при компенсации не отмечалось: уровень СКФ, рассчитанный по различным формулам у ряда больных снижался, у некоторых увеличивался, у некоторых лдостоверно не изменялся (Рисунок 3.12).

Рисунок 3.12

Поскольку продукция креатинина у каждого человека индивидуальна, для оценки изменения его функции почек в динамике целесообразно использовать концентрацию креатинина в сыворотке крови. У 74% больных не отмечалось значимой динамики или отмечалось снижение, у 26%—повышение концентрации креатинина в сыворотке крови при компенсации на ≥10 мкмоль/л. Медиана снижения концентрации креатинина составила 17,8 (7,5; 30,0) мкмоль/л, а ее повышения — 23 (18; 50) мкмоль/л. Причем у
6 пациентов повышение концентрации креатинина превышало 26,5 мкмоль/л.

Экскреция альбумина с мочой при компенсации снижалась у 77,3% (n=17) при определении с помощью ИФА и у 68,2% (n=15) при определении с помощью ИТДА. Однако у 22,7% (n=5) больных при переходе из состояния декомпенсации в состояние компенсации отмечалось увеличение ЭАМ при определении методом ИФА, а при определении методом ИТДА такие изменения отмечались у 31,8% (n=7). Больные сповышением ЭАМ(ИТДА) получали более высокие дозы спиронолактона по сравнению с теми, у кого отмечалось снижение ЭАМ при компенсации [37,5 (25; 50) и 12,5 (6,25; 25), p=0,037], что может говорить о неблагоприятном воздействии этого препарата на почки.

У большинства больных при выходе из декомпенсации отмечалось повышение параметров базального и общего объемного почечного кровотока (Рисунок 3.13 А-Б). Суточная экскреция и концентрация фосфатов, глюкозы и кальция в моче при переходе из состояния декомпенсации в состояние компенсации не изменились. Однако отмечалось достоверное снижение суточной экскреции мочевой кислоты с мочой [2,3 (1,96; 3,71) по сравнению с 3,87 (2,66; 4,62) ммоль/сут, p=0,009], хотя концентрация ее в единице объема мочи и в сыворотке крови не изменилась. Как и ожидалось, при компенсации наблюдалось значительное снижение клиренса натрия [0,73 (0,53; 0,86) по сравнению с 0,99 (0,46; 1,36), p=0,014], хлоридов [1,16 (0,83; 1,28) по сравнению с 1,33 (0,68; 2,15), p=0,021] и осмолярного клиренса [2,08 (1,95; 2,47) по сравнению с 2,3 (1,83; 3,0), p=0,031]. Однако достоверной динамики осмоляльности сыворотки крови, мочи, экскретируемой фракции осмотически активных веществ, натрия, хлоридов, концентрационного коэффициента, объема канальцевой реабсорбции, клиренса и реабсорбции осмотически свободной воды не было.

Рисунок 3.13
Следовательно, необходимо тщательно мониторировать функциональное состояние почек у больных с ХСН при выходе из состояния декомпенсации.

Динамика функционального состояния почек у обследованных больных в течение 3 месяцев

Как уже было сказано, при повторном с интервалом в 3 месяца и более расчете СКФ по формуле СКД-ЕПИ у больных с ХСНнФВ (n=100) отмечалось незначительное, но достоверное снижение значений СКФ [c61,3 (48,7; 77,7) до 60,7 (49,5; 74,6) мл/мин/1,73м2, p=0,03] (Рисунок 3.12).

Согласно современным рекомендациям, диагноз ХБП ставится при снижении СКФ ≤60 мл/мин/1,73м2 или наличии маркеров повреждения почек в течение 3 месяцев и более. Поскольку при оценке динамики креатинина и СКФ, рассчитанной по любой из формул, оказалось, что достоверных различий между СКФ в начале госпитализации, в конце госпитализации и через 3-12 месяцев после госпитализации нет, на наш взгляд, целесообразно диагностировать ХБП у пациентов с ХСН при двукратном выявлении снижения СКФ за время госпитализации.

Для выявления предикторов снижения функционального состояния почек при ХСН в отдаленном периоде, исходя из индивидуальной скорости продукции креатинина у каждого человека, мы сравнили группы больных со значимым увеличением концентрации креатинина (на 10 мкмоль/л и более, n=31) в сыворотке крови в течение 3-12 месяцев и без него (n=46).

У больных, у которых концентрация креатинина увеличивалась, была более выражена диастолическая дисфункция (тип диастолической дисфункции 2,5 (2,0; 3,0) и 1 (1; 2), p=0,012) идилатация правого предсердия (113,8 (105,2; 202) и 55,0 (46,2; 56,1), p=0,036). По значениям остальных показателей эти группы больных не различались.

Нарушения минерального и костного обмена при ХСН

Изменения кальций-фосфорного обмена у больных с ХСН
Для изучения минерально-костного обмена мы оценивали кальций общий, кальций скорректированный по уровню альбумина, неорганический фосфат, интактный ПТГ, 25гидроксивитамин D, кальцитонин, C-концевой телопептид, остеокальцин и остеопротегерин у пациентов основной и контрольной групп. Достоверных различий по уровню общего и скорректированного кальция, неорганического фосфата и кальцитонина у больных с ХСНнФВ и гипертонической болезнью не выявлено. Уровень интактного ПТГ был достоверно выше, уровень 25гидроксивитамина D был достоверно ниже у больных с ХСНнФВ по сравнению с больными с ГБ(Таблица 3.31).

Таблица 3.31. Показатели минерально-костного обмена у больных с XСН и ГБ

<table>
<thead>
<tr>
<th>Показатель сыворотки крови</th>
<th>XСНнФВ (n=153)</th>
<th>ГБ (n=38)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кальций общий, ммоль/л</td>
<td>2,25 (2,04; 2,4)</td>
<td>2,37 (2,03; 2,49)</td>
<td>0,13</td>
</tr>
<tr>
<td>Кальций общий, мг/дл</td>
<td>9,0 (8,18; 8,92)</td>
<td>9,48 (8,12; 9,96)</td>
<td>0,15</td>
</tr>
<tr>
<td>Скорректированный кальций, мг/дл</td>
<td>8,72 (8,16; 9,4)</td>
<td>9,28 (8,08; 9,88)</td>
<td>0,21</td>
</tr>
<tr>
<td>Неорганический фосфат, моль/л</td>
<td>1,23 (1,08; 1,41)</td>
<td>1,23 (1,12; 1,4)</td>
<td>0,77</td>
</tr>
<tr>
<td>Интактный ПТГ, пг/мл</td>
<td>78,6 (42,7; 136)</td>
<td>41,2 (24,0; 53,6)</td>
<td><0,001</td>
</tr>
<tr>
<td>25(ОН)витамин D, нмоль/л</td>
<td>47,2 (37,6; 55,0)</td>
<td>55,6 (43,0; 64,3)</td>
<td>0,014</td>
</tr>
<tr>
<td>Кальцитонин, пг/мл</td>
<td>4,67 (3,94; 7,88)</td>
<td>4,95 (1,78; 11,32)</td>
<td>0,99</td>
</tr>
</tbody>
</table>

У больных с XСНнФВ гипокальциемия была выявлена у 38,4% больных, гиперкальциемия - у3,3%, при ГБ – у 40% и 11,4% соответственно (χ^2 p>0,05, Рисунок 3.14).

Рисунок 3.14
Пациенты основной группы с гипокальциемией и без нее достоверно не отличались по возрасту, полу, ИМТ, АД, СДД, объективной и субъективной выраженности клинической симптоматики, этиологии ХСН, длительности ХСН в анамнезе, количеству инфарктов миокарда в анамнезе, табакокурению, переносимости физических нагрузок, структурно-функциональному состоянию сердца, в т.ч. наличию и выраженности систолической и диастолической дисфункции, лабораторным показателям. При этом у больных с гипокальциемией была значительно ниже минеральная плотность костной ткани, определенная с помощью двухэнергетической рентгеновской абсорбциометрии (Таблица 3.32, Рисунок 3.15).

Таблица 3.32. Сравнительная характеристика результатов двухэнергетической рентгеновской абсорбциометрии у больных с ХСНнФВ с и без гипокальциемией.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>С гипокальциемией(н=14)</th>
<th>Без гипокальциемии(н=18)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>МПК Left Femur Neck, г/см²</td>
<td>0,825 (0,746; 0,860)</td>
<td>0,928 (0,836; 0,918)</td>
<td>0,031</td>
</tr>
<tr>
<td>МПК Right Femur Neck, г/см²</td>
<td>0,791 (0,737; 0,873)</td>
<td>0,890 (0,814; 0,932)</td>
<td>0,063</td>
</tr>
<tr>
<td>МПК Left Trochanter, г/см²</td>
<td>0,709 (0,615; 0,854)</td>
<td>0,844 (0,822; 0,932)</td>
<td>0,008</td>
</tr>
<tr>
<td>МПК Right Trochanter, г/см²</td>
<td>0,715 (0,645; 0,819)</td>
<td>0,879 (0,820; 0,911)</td>
<td>0,003</td>
</tr>
<tr>
<td>МПК Left Femur Total, г/см²</td>
<td>0,933 (0,854; 1,10)</td>
<td>1,11 (1,004; 1,17)</td>
<td>0,09</td>
</tr>
<tr>
<td>МПК Right Femur Total, г/см²</td>
<td>0,894 (0,844; 1,075)</td>
<td>1,073 (1,037; 1,103)</td>
<td>0,047</td>
</tr>
<tr>
<td>МПК L3, г/см²</td>
<td>1,022 (0,907; 1,133)</td>
<td>1,167 (1,0; 1,225)</td>
<td>0,063</td>
</tr>
<tr>
<td>МПК L4, г/см²</td>
<td>1,035 (0,924; 1,122)</td>
<td>1,203 (1,05; 1,356)</td>
<td>0,014</td>
</tr>
</tbody>
</table>
Известно, что к развитию гиперкальциурии и гипокальциемии может приводить фуросемид. Однако суточная экскреция кальция с мочой была повышена лишь у 4,3% обследованных больных, а у 30,1% пациентов, напротив, отмечалось ее снижение. Кроме того, концентрация кальция в крови не коррелировала с дозой фуросемида, а также дозой других диуретиков и СДД.

Гиперфосфатемия у больных с ХСНФВ была выявленав 23,03% случаях, при ГБ - у 14,29% больных (χ^2 p<0,05, Рисунок 3.16).

Гиперфосфатемия у больных с ХСНФВ была взаимосвязана с большей выраженностью клинической симптоматики ХСН, более высокими максимальными значениями АД в анамнезе, табакокурением, гипоальбуминемией, более высокими показателями альбуминурии и С-реактивного белка, меньшими значениями СКФ и кальцитонина в крови (Таблица 3.33).

Таблица 3.33. Сравнительная характеристика больных с ХСНФВ с и без гиперфосфатемией.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>С гиперфосфате-</th>
<th>Без гиперфосфате-</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>мий (n=35)</td>
<td>мий (n=117)</td>
<td></td>
</tr>
<tr>
<td>ФК NYHA: I/II/III/IV, %</td>
<td>III (III;III):</td>
<td>III (II;III):</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>2,86/20/54,29/22,86</td>
<td>4,27/40,17/44,44/11,11</td>
<td></td>
</tr>
<tr>
<td>МаксДАДванамнезе, ммрт.ст.</td>
<td>100 (100; 120)</td>
<td>100 (80;110)</td>
<td>0,028</td>
</tr>
<tr>
<td>МакссреднееАДвамнезе, ммрт.ст.</td>
<td>126,7 (120;153,3)</td>
<td>123,3 (103,3; 136,7)</td>
<td>0,031</td>
</tr>
<tr>
<td>Альбумин мочи, мг/л</td>
<td>39,4 (13,2; 58,2)</td>
<td>20,5 (6,8; 38,5)</td>
<td>0,024</td>
</tr>
<tr>
<td>Показатель</td>
<td>С гиперпаратиреозом (n=49)</td>
<td>Без гиперпаратиреоза (n=31)</td>
<td>p</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>34,3 (30,2; 28,1)</td>
<td>41,1 (36,4;44,9)</td>
<td>0,038</td>
</tr>
</tbody>
</table>
У больных с гиперпаратиреозом по сравнению с остальными были хуже систолическая функция левого желудочка, ниже СКФ, выше альбуминурия и был более длительный анамнез ХСН. Пациенты с ХСН с/без вторичного гиперпаратиреоза достоверно не различались по возрасту, полу ИМТ (p>0,05). Диастолическая дисфункция, гипертрофия миокарда ЛЖ, регургитации на клапанах, кальциноз клапанов сердца встречались в обеих группах одинаково часто (p>0,05). Достоверных различий по выраженности клинической симптоматики ХСН у больных этих групп выявлено не было (p>0,05).

В группе пациентов с ХСНнФВ и гиперпаратиреозом отмечены достоверно более высокие уровни маркера остеосинтеза остеокальцина (р=0,001). В то же время уровни общего и скорректированного кальция, С-телопептида, остеопротегерина и кальцитонина не зависели от концентрации ПТГ (p>0,05).

При ГБ была выявлена корреляционная взаимосвязь между ПТГ и максимальными цифрами систолического и диастолического АД в анамнезе (r=0,4, p=0,012 и r=0,44, p=0,005), индексом массы тела (r=0,43, p=0,008), а также – с показателями диастолической дисфункции миокарда ЛЖ, в частности со скоростью наполнения левого желудочка в систолу предсердий (волны А) в трансмитральном потоке (r=0,55, p=0,002). Кроме того, у больных с ГБ кальцитонин коррелировал с креатинином сыворотки (r=0,38, p=0,019), концентрация витамина D в сыворотке – с конечным диастолическим объемом ЛЖ (r=0,43, p=0,015).

Обмен витамина D

Снижение уровня витамина D ниже нормы локальной лаборатории, в которой проводились анализы (<47,4 нмоль/л), было выявлено у 52,9%
(95%ДИЗ8,8-67,1%) больных с ХСНнФВ и 27,8% (95%ДИ 12,4; 43,1%) больных с ГБ (χ² р=0,033, Рисунок 3.20). При интерпретации результатов исследования в соответствии с принятой в настоящее время градацией уровня витамина D, оказалось, что у большинства обследованных пациентов имеется дефицит, недостаточность или гиповитаминоз витамина D (Таблица 3.35).

Рисунок 3.20

Таблица 3.35. Уровни витамина D у больных с ХСНнФВ и ГБ[747, 989].

<table>
<thead>
<tr>
<th>Уровень обмена витамина D</th>
<th>Концентрация 25ОНвитамина D в сыворотке крови, нмоль/л</th>
<th>ХСНнФВ (n=51)</th>
<th>ГБ (n=36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дефицит</td>
<td>0-25</td>
<td>1,96%</td>
<td>2,78%</td>
</tr>
<tr>
<td>Недостаточность</td>
<td>>25-<50</td>
<td>58,82%</td>
<td>30,56%</td>
</tr>
<tr>
<td>Гиповитаминоз</td>
<td>50-70</td>
<td>27,45%</td>
<td>55,56%</td>
</tr>
<tr>
<td>Норма</td>
<td>>70-250</td>
<td>11,76%</td>
<td>11,11%</td>
</tr>
<tr>
<td>Гипервитаминоз</td>
<td>>250</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

При разделении больных на группы по нижней границе нормы локальной лаборатории оказалось, что больные со снижением уровня витамина D были ниже ростом по сравнению с остальными [1,68 (1,65; 1,75); 1,75 (1,69; 1,73), р=0,026 соответственно], имели более выраженную клиническую симптоматику ХСН, хуже переносили физические нагрузки (Таблица 3.36). Достоверных различий по возрасту и полу между этими группами пациентов выявлено не было (р>0,05). У пациентов со снижением уровня витамина D отмечены достоверно более высокие уровни маркера резорбции костной ткани С-телопептида (p=0,003).

Таблица 3.36. Сравнительная характеристика больных с ХСНнФВ с /без снижения 25ОНвитамина D

<table>
<thead>
<tr>
<th>Показатель</th>
<th>С снижением</th>
<th>Без снижения</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фактор риска</td>
<td>%</td>
<td>Фактор риска</td>
<td>%</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Модифицируемые</td>
<td>Немодифицируемые</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гипокальциемия</td>
<td>38,4%</td>
<td>Возраст >65 лет</td>
<td>45,1%</td>
</tr>
<tr>
<td>Недостаточность/дефицит витамина D</td>
<td>58,82/1,96%</td>
<td>Женский пол</td>
<td>14,6%</td>
</tr>
<tr>
<td>Табакокурение при включении/ в анамнезе</td>
<td>36,5%/54,5%</td>
<td>Европеоидная раса</td>
<td>100%</td>
</tr>
<tr>
<td>Злоупотребление алкоголем</td>
<td>24,5%</td>
<td>Предшествующие переломы</td>
<td>49,9%</td>
</tr>
<tr>
<td>Низкая физическая активность*</td>
<td>86,2%</td>
<td>Ранняя (<45 лет) менопауза у женщин</td>
<td>28,6%</td>
</tr>
<tr>
<td>Снижение СКФ<60/60-89 мл/мин/1,73м2</td>
<td></td>
<td>Снижение СКФ<60/60-89 мл/мин/1,73м2</td>
<td>46,6/42,7%</td>
</tr>
<tr>
<td>ИМТ</td>
<td><20</td>
<td>ИМТ</td>
<td>2,1%</td>
</tr>
</tbody>
</table>

Таблица 3.37. Основные факторы риска остеопороза и переломов костей у больных с ХСН и ФВ (n=212)

Остеопороз при ХСН

Различные модифицируемые и немодифицируемые факторы риска развития остеопороза и переломов костей часто имеются у больных с ХСН [36] (Таблица3.37).
Поскольку большинство переломов возникает вследствие падений, мы оценили модифицируемые и немодифицируемые факторы риска падений у больных с ХСНнФВ[36] (Таблица 3.38).

Таблица 3.38. Факторы риска падений при ХСНнФВ(n=212)

<table>
<thead>
<tr>
<th>Фактор риска</th>
<th>%</th>
<th>Фактор риска</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Модифицируемые</td>
<td></td>
<td>Немодифицируемые</td>
<td></td>
</tr>
<tr>
<td>Низкая физическая активность*</td>
<td>86,2%</td>
<td>Немощность*</td>
<td>44%</td>
</tr>
<tr>
<td>Прием препаратов, вызывающих головокружение или нарушение баланса тела</td>
<td>100%</td>
<td>Нарушения сна*</td>
<td>65,6%</td>
</tr>
<tr>
<td>Снижение СКФ<60/60-89 мл/мин/1,73м2</td>
<td>46,6/42,7%</td>
<td>Нарушения зрения</td>
<td>99,3%</td>
</tr>
</tbody>
</table>

* - по результатам заполнения Миннесотского опросника

При осмотре глазного дна офтальмологом (n=70) у 72,9% были признаки гипертонической ангиопатии сетчатки, 8,6% - гипертонического ангiosklerоза сетчатки, у 7,1% - атеросклеротической, 1,4% - диабетической, 1,4% - смешанной (гипертонической+диабетической), 7,1% - другой ангиопатии сетчатки. Эти изменения могли приводить к нарушениям зрения и увеличению риска падений.

По результатам заполнения больными Миннесотского опросника, нарушения полноценного сна в ночное время были выявлены у 65,6% больных с ХСНнФВ. Трудности при ходьбе или подъеме по лестнице раз-
личной выраженности отмечали 86,2%, что, несомненно, сопровождалось снижением физической активности. Ощущение беспомощности испытали 44%, что также могло способствовать увеличению риска падений.

Учитывая наличие у многих больных с ХСН факторов риска остеопороза и переломов, мы оценили минеральную плотность костной ткани (МПК) по результатам двуэнергетической рентгеновской абсорбциометрии (ДРА, денситометрии) позвоночника и/или бедра у 37 пациентов с ХСНнФВ, у многих из которых было выявлено снижение МПК (Таблица 3.39).

Таблица 3.39. Результаты двухэнергетической рентгеновской абсорбциометрии у больных с ХСНнФВ.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>МПК, г/см2</th>
<th>T-критерий, SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Femur Neck (шейки бедра)</td>
<td>0,84 (0,77;0,93)</td>
<td>-1,22 (-2,15;-0,55)</td>
</tr>
<tr>
<td>Femur Total (бедра)</td>
<td>1,07 (0,93;1,21)</td>
<td>0,005 (-1,1;0,56)</td>
</tr>
<tr>
<td>L1 (1 поясничный позвонок)</td>
<td>0,99 (0,91;1,12)</td>
<td>-0,44 (-1,35;0,54)</td>
</tr>
<tr>
<td>L4 (4 поясничный позвонок)</td>
<td>1,13 (1,03;1,26)</td>
<td>-0,47 (-1,2;0,55)</td>
</tr>
</tbody>
</table>

По результатам денситометрии, остеопороз был диагностирован – у 35,1% (95%ДИ 19,0-51,3%, 13 пациентов), остеопения - у 59,5% (95%ДИ 36,6-82,3%) больных с ХСНнФВ (Рисунок 3.21). Переломы в анамнезе были у 2 пациентов с остеопорозом, диагностированным по результатам денситометрии. Причем среди пациентов с остеопорозом изолированное поражение проксимальных отделов бедренной кости было выявлено у 75% больных, изолированное поражение поясничного отдела позвоночника – у 25%. Сочетанного поражения и бедренной кости, и позвоночника выявлено не было.

Рисунок 3.21

МПК коррелировала свыраженностью ХСН по результатам Канзасского опросника КССО (для способности подняться один лестничный проем без остановок r=0,73, p=0,027 для Fneck; r=0,68, p=0,046 для Ftotal, Рисунок 3.22), креатинином сыворотки (r=0,50, p=0,048 для Fneck), СКФ
(r=0,57, p=0,039 для Fneck; r=0,7, p=0,005 для L1), наличием альбуминурии уровня A2 (r=-0,66, p=0,036 для Fneck; r=-0,69, p=0,026 для Ftotal).

Рисунок 3.22
Т-критерий был взаимосвязан с этими показателями, а также с интактным ПТГ (r=-0,47, p=0,033 для Fneck; r=-0,47, p=0,033 для Ftotal; r=-0,51, p=0,019 для L1 и r=-0,53, p=0,014 для L4) и 25-гидроксивитамином D (r=0,63, p=0,029 для L4, Рисунок 25). Взаимосвязи Т-критерия и МПК с возрастом, курением, употреблением алкоголя, кальцитонином, ФК NYHA и ФВЛЖ не было. При снижении концентрации кальция в сыворотке крови отмечалось снижение значений Т-критерия, т.е. большая выраженность остеопороза (для L4r=0,39, p=0,031 для общего кальция; r=0,39, p=0,031 для корrigированного кальция).

При разделении больных по результатам денситометрии на 2 группы оказалось, что при наличии остеопороза ниже значения СКФ, выше концентрация креатинина в сыворотке крови и уровень интактного паратиреоидного гормона (Рисунок 3.23).

Рисунок 3.23
Кроме того, у 17 обследованных пациентов, которым денситометрия не проводилась, остеопороз был диагностирован клинически на основании наличия в анамнезе низкоэнергетического перелома, перенесенного в 50 лет и старше: у 2 – пальцев стоп, у 2 – голени, у 1 – голени и пяточной кости, у 1 – костей таза, у 3 – шейки бедра (у 1-го из них – дважды, у 1 – с последующим переломом 2 поясничного позвонка), у 1 – костей предплечья, у 3 – переломы ребер, у 4 – локализации не выяснена. У 1-й больной 3 перелома после 50 лет. Следовательно, с учетом и клинических данных, и на основании денситометрии остеопороз был выявлен у 52% (95% ДИ 37,7; 66,3%) больных с ХСН.

При разделении пациентов на группы по наличию/отсутствию остеопороза, диагностированного клинически и инструментально (таблица
3.40), достоверных различий указанных групп по возрасту, полу и структурно-функциональному состоянию сердца и почек выявлено не было. При этом отмечалась тенденция к большей продолжительности АГ в анамнезе и большему времени, прошедшему после последнего перенесенного инфаркта миокарда.

Таблица 3.40. Сравнительная характеристика больных с ХСНнФВ с и без остеопороза.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>С остеопорозом (n=30)</th>
<th>Без остеопороза (n=24)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длительность АГ в анамнезе, годы</td>
<td>12 (3; 26)</td>
<td>5,5 (1,5; 10)</td>
<td>0,09</td>
</tr>
<tr>
<td>Время, прошедшее после последнего ОИМ, годы</td>
<td>5 (1,5; 11)</td>
<td>1,25 (0,6; 5,0)</td>
<td>0,07</td>
</tr>
<tr>
<td>СКФСКД-ЕПИ, мл/мин/1,73м2</td>
<td>58,1 (48,6; 69,9)</td>
<td>57,7 (48,6; 74,6)</td>
<td>0,39</td>
</tr>
</tbody>
</table>

У больных с остеопорозом риск развития переломов любой локализации и переломов шейки бедра по модели FRAX составили 6,0 (4,1; 8,7)% от 2,8% до 20% и 0,7 (0,3-1,6)% от 0 до 9,3% соответственно. У пациентов с остеопенией значения риска по модели FRAX составили 4,3 (3,9; 6,4)% от 3,2% до 11% и 0,5 (0,1-1,1)% от 0,1% до 1,7% соответственно, что не требовало медикаментозной коррекции.

Была выявлена тенденция к повышению 10-летнего риска развития переломов любой локализации, оцененной с помощью модели FRAX, у больных с гиперфосфатемией (Рисунок 3.24). Риск развития переломов шейки бедра был достоверно выше у больных с уровнем интактного паратагормона в сыворотке выше медианы (Рисунок 3.25).

Рисунок 3.24
Рисунок 3.25
Было выявлено, что выраженность кальциноза митрального \((r=-0,48, p=0,020 \text{ для } F_{\text{total}}; r=-0,47, p=0,025 \text{ для } F_{\text{neck}})\) и аортального клапанов\((r=-0,46, p=0,026 \text{ для } F_{\text{total}}; r=-0,46, p=0,025 \text{ для } F_{\text{neck}})\) увеличивалась при снижении МПК.

Больным с остеопорозом была предложена медикаментозная терапия: алендронат (Фосамакс или Теванат) 70 мг в неделю в комбинации с препаратом кальция и витаминаD (Кальций D3 Никомед по 1 жевательной таблетке, содержащей 500 мг кальция, или 1250 мг карбоната кальция, и 200 МЕ холекальциферола, 2 раза в день) на длительный прием. Больные с остеопорозом наблюдались нами в течение 54 (39; 60) месяцев. Принимали предложенную терапию 34,78% пациентов с остеопорозом в течение 18-36 месяцев. Переносимость препаратов была удовлетворительной. Ухудшения течения ХСН на фоне терапии не выявлено. Переломов у этих пациентов до окончания исследования не было. После проведения контрольной денситометрии через 18-36 месяцев выявлено повышение значений МПК, препараты отменены.

У одного пациента, отказавшегося от лечения, через 2 года после диагностики остеопороза при падении с высоты собственного тела произошел перелом костей таза, до 30.05.2015 пациент был жив. Смертность пациентов, отказавшихся от лечения остеопороза, была достоверной выше, чему получавших терапию \((\chi^2=0,005)\).

Костный метаболизм при ХСН

Мы оценили маркеры костного метаболизма у больных с ХСН и ФВ. Концентрация С-телопептида в сыворотке крови составила 0,42 (0,29; 0,60)нг/мл, остеокальцина 17,8 (16,1; 23,4)нг/мл, остеопротегерина 193 (149; 243)пг/мл.

Уровень остеокальцина коррелировал с интактным ПТГ \((r=0,39, p=0,001)\) и Т-критерием \((r=-0,35, r=0,049, r=-0,41, p=0,019 \text{ для } L2, L4)\). Уровень С-концевого телопептида коррелировал с концентрацией мочевины \((r=-0,77, p<0,001)\), креатинина \((r=0,85, p<0,001)\), кальция \((r=-0,43, p=0,045)\),
фосфора сыворотки (r=0,40, p=0,046) и СКФ (r=-0,76, p<0,001). Концентрация остеопротегерина коррелировала с интактным ПТГ (r=0,34, p=0,014), кальцитонином (r=0,28, p=0,046), МПК (r=0,42, p=0,039 для FemurNeck, r=0,47, r=0,017 для FemurTotal).

Концентрации остеокальцина, C-телопептида, остеопротегерина у обследованных больных не зависели от возраста, курения, злоупотребления алкоголем в анамнезе.

Таким образом, у многих больных с ХСН выявлены признаки нарушений минерально-костного обмена, в т.ч. гиперфосфатемия, вторичный гиперпаратиреоз, недостаточность витамина D, остеопения и остеопороз. Показана взаимосвязь МКН при ХСН с систолической дисфункцией миокарда ЛЖ, выраженностью клинической симптоматики ХСН, переносимостью физических нагрузок, почечной дисфункцией, тяжестью АГ и длительностью ХСН в анамнезе, активацией системы воспаления, табакокурением, что позволяет, рассматривать эти факторы в качестве предикторов развития МКН при ХСН. С другой стороны, взаимосвязь МКН с выраженностью клинической симптоматики при ХСН может свидетельствовать об усугублении тяжести ХСН при присоединении МКН и возможности улучшения течения ХСН путем коррекции МКН. Это позволяет говорить о необходимости признания МКН при ХСН и разработки Международных и Национальных рекомендаций по диагностике и коррекции МКН при этом заболевании.

Печень как орган-мишень при ХСН

Маркеры вирусных гепатитов у всех обследованных больных были отрицательны. Гепатомегалия, на основании клинико-инструментальных данных, была выявлена у 56,7% (95%ДИ 45,4-59,9%) пациентов с ХСН. Выраженность ее у большинства была умеренной (<5 см от края реберной дуги), лишь у 4,34% больных она была более значимой.
У больных с ХСНнФВ была выше концентрация общего и прямого билирубина в сыворотке крови, чем у больных с ХСНсФВ (р=0,064; р=0,032). Достоверных различий по другим изученным показателям у больных с ХСНнФВ, ХСнсФВ и ГБ не выявлено (р>0,05).

У больных с ХСНнФВ часто выявлялись признаки цитолитического синдрома. Повышение уровня ЛДГ отмечалось у 53,7%, АСТ – у 32,0%, АЛТ – у 37,3%. ГГТП была повышена у 81,3%, ЩФ - у 5,2%, билирубин общий – у 50,0%, прямой – у 52,9% больных с ХСНнФВ(Таблица 3.41). Белковосинтетическая функция печени у большинства пациентов была сохранена. Признаки гипоальбуминемии выявлены у 7,8%, гипопротеинемии – у 15,3% больных. Признаки коагулопатии без антикоагулянтной терапии как проявление малой печеночно-клеточной недостаточности выявлялись 51,9-61,1% больных.

Таблица 3.41. Функциональное состояние печени при ХСНнФВ (n=77)

<table>
<thead>
<tr>
<th>Клинико-инструментальный параметр/показатель крови</th>
<th>Медиана (25;75-процентили)</th>
<th>Частота выявления,% (95%ДИ)</th>
<th>Изменение ≥2N,%</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ЛДГ, ЕД/л</td>
<td>457 (302; 550)</td>
<td>53,7 (42,3-62,1)</td>
<td>1,9</td>
</tr>
<tr>
<td>↑АСТ, ЕД/л</td>
<td>26 (20; 45)</td>
<td>32,0 (40,5-55,9)</td>
<td>12,0</td>
</tr>
<tr>
<td>↑АЛТ, ЕД/л</td>
<td>25 (18; 41)</td>
<td>37,3 (42,0-58,0)</td>
<td>12,0</td>
</tr>
<tr>
<td>↑ГГТП, ЕД/л**</td>
<td>143,5 (75,5; 322,5)</td>
<td>81,3 (29,8-62,4)</td>
<td>56,3</td>
</tr>
<tr>
<td>↑ЩФ, ЕД/л</td>
<td>187 (154; 229)</td>
<td>5,2 (19,3-26,6)</td>
<td>0</td>
</tr>
<tr>
<td>↑билирубина общ., мкмоль/л</td>
<td>20,75 (12,7; 32,0)</td>
<td>50,0 (41,7-64,1)</td>
<td>20,6</td>
</tr>
<tr>
<td>↑билирубина пр., мкмоль/л</td>
<td>6,4 (3,1; 12,3)</td>
<td>52,9 (40,9-66,7)</td>
<td>38,2</td>
</tr>
<tr>
<td>↓альбумина, г/л</td>
<td>42 (37,6; 45,0)</td>
<td>7,8 (24,2-30,0)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alбумин</td>
<td>Общий белок</td>
<td>ЩФ</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>ФК NYHA</td>
<td>-0,29;</td>
<td>-0,25;</td>
<td>0,27;</td>
</tr>
<tr>
<td></td>
<td><0,001</td>
<td>0,002</td>
<td></td>
</tr>
<tr>
<td>СБ ШОКС</td>
<td>-0,23;</td>
<td>-0,17;</td>
<td>0,41;</td>
</tr>
<tr>
<td></td>
<td>0,004</td>
<td>0,045</td>
<td></td>
</tr>
<tr>
<td>ФВ ЛЖ</td>
<td></td>
<td>-0,32;</td>
<td>-0,44;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,007</td>
<td>0,004</td>
</tr>
<tr>
<td>УИ ЛЖ</td>
<td></td>
<td>-0,34;</td>
<td>-0,44;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,016</td>
<td>0,042</td>
</tr>
<tr>
<td>СКФ MDRDs</td>
<td>0,21; 0,007</td>
<td>0,24;</td>
<td>-0,30;</td>
</tr>
<tr>
<td></td>
<td>0,003</td>
<td>0,009</td>
<td>0,042</td>
</tr>
<tr>
<td>СКФ СКД-EPI</td>
<td>0,22; 0,004</td>
<td>0,25;</td>
<td>-0,31;</td>
</tr>
<tr>
<td></td>
<td>0,002</td>
<td>0,007</td>
<td>0,042</td>
</tr>
</tbody>
</table>
У декомпенсированных больных были ниже значения общего белка, альбумина в сыворотке крови, выше – уровни ЩФ, ЛДГ общей (Таблица 3.43). Уровни билирубина общего и связанного, АСТ, АЛТ, ГГТП, АЧТВ достоверно не отличались.

Таблица 3.43. Функциональное состояние печени у декомпенсированных и компенсированных больных с ХСНнФВ

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Декомпенсация (n=63)</th>
<th>Компенсация (n=79)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>альбумина, г/л</td>
<td>40 (36; 43)</td>
<td>43 (39; 46,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>белка, г/л</td>
<td>69 (64; 74)</td>
<td>73 (69; 77)</td>
<td>0,002</td>
</tr>
<tr>
<td>ЛДГобщ, ЕД/л</td>
<td>508 (444; 551)</td>
<td>350,5 (291; 454)</td>
<td>0,006</td>
</tr>
<tr>
<td>ЩФ, ЕД/л</td>
<td>214 (181,5; 257,5)</td>
<td>174,5 (145,5; 205)</td>
<td>0,001</td>
</tr>
<tr>
<td>протромбина, %*</td>
<td>56,7 (33; 71,7)</td>
<td>79,4 (64,3; 89,5)</td>
<td>0,033</td>
</tr>
<tr>
<td>МНО*</td>
<td>1,38 (1,2; 2,08)</td>
<td>1,13 (1,05; 1,3)</td>
<td>0,028</td>
</tr>
<tr>
<td>С-РБ</td>
<td>12 (4; 20)</td>
<td>4 (0,4; 16)</td>
<td>0,011</td>
</tr>
<tr>
<td>фибриноген</td>
<td>2,96 (4,46; 3,39)</td>
<td>3,24 (2,74; 3,9)</td>
<td>0,03</td>
</tr>
<tr>
<td>Д-димеры</td>
<td>1055 (481; 1897)</td>
<td>205 (124; 532)</td>
<td>0,007</td>
</tr>
</tbody>
</table>

*-без терапии антикоагулянтами

У декомпенсированных больных с ХСНиФБ при переходе в состояние компенсации не отмечалось достоверного изменения альбумина, ЛДГобщ, АСТ, АЛТ, ЩФ, ГГТП, общего и прямого билирубина. При этом отмечалось повышение общего белка после достижения состояния компенсации (71 (67; 76) и 72 (70; 77) г/л соответственно, p=0,030). У лиц с повышением АСТ отмечалось достоверное снижение этого показателя при компенсации (Рисунок 3.26). У лиц с повышением ЛДГ отмечалась тенденция к снижению этого показателя при компенсации (p=0,05). Достоверной динамики других изученных показателей не выявлено.
Рисунок 3.26

Значения индекса MELD-XI у больных с ХСНнФВ было достоверно выше, чем при ХСНсФВ (13,28 (9,7; 17,5) и 8,3 (4,7; 11,2) соответственно, р=0,01).

Бронхолегочный аппарат у больных с ХСН

Мы исследовали состояние бронхолегочного аппарата у пациентов с ХСН без сопутствующей патологии органов дыхания, в т.ч. ХОБЛ. У больных с декомпенсацией ХСН отмечались изменения при рентгенографии органов грудной клетки: усиление/обогащение легочного рисунка у 60%, признаки застоя – у 28%. Малый гидроторакс выявлялся у 30% больных, большой, в т.ч. двусторонний, – у 14%. Достоверных различий по выраженности застойных явлений в легких у пациентов с ХСНсФВ и ХСНнФВ не выявлено (р>0,05).

Компенсированным больным ХСНнФВ был проделано комплексное функциональное исследование внешнего дыхания (n=59), по результатам которого объем форсированного выдоха за первую секунду (ОФВ1) составил 74,1 (60,7-93,4)% от должного (здесь и далее), форсированная жизненная емкость легких (ФЖЕЛ) – 77,3 (66,8-88,6)% ОФВ1/ФЖЕЛ – 78,3 (73,3-84,0)% Причем снижение ОФВ1<80% от должного выявлено у 55,9% (95%ДИ 42,4; 61,2%), снижение ФЖЕЛ80% - у 57,6% (95%ДИ 42,2;60,9), снижение ОФВ1/ФЖЕЛ <70% - у15,3% (95%ДИ 30,7; 44,3) больных с ХСН, ниже LLN – у5,1% больных с ХСНФВ.

Объемная скорость форсированного выдоха на уровне 25% ФЖЕЛ(FEF25%) составила 63,9 (46,7-79,0), на уровне 50% ФЖЕЛ(FEF50%) – 48,7 (35,6-77,0), на уровне 75% ФЖЕЛ (FEF75%) – 39,3 (25,5-66,8).

Общаяемкостьлегких (ОЕЛ) составила 102 (92,2-112,3)% остаточныйобъем(ООЛ) – 152,8 (130,5-167,1)%.
Диффузионная способность оксида углерода (Dlco) составила 71,8 (59,0-86,4)%, снижение диффузионной способности ниже 80% от должного выявлено у 67,6% больных. Внутригрудной объем газа (ITGV) составил 115,6 (104,0-134,1)%, максимальное давление вдоха (PImax) - 64 (42-80,9)%; mouthocclusion pressure 100 msaftertheonsetofinspiratoryeffort (P0,1) – 75,3 (52,5-107,0), отношение P0,1/PImax 441,2 (296,8-693,9), Rocc– 132,7 (107,0-163,1), альвеолярный объем (VA) - 83 (76-92)%. Альвеолярный объем был ниже 80% от должного у 37,8% пациентов с ХСНнФВ.

Функциональное состояние бронхолегочного аппарата было связано с выраженностью клинической симптоматики ХСН. Сумма баллов Минес-сотского опросника коррелировала с резервным объемом выдоха (ERV) r=-0,39, p=0,009, остаточным объемом по Heliumr=-0,39, p=0,023, резервным объемом выдоха Heliumr=-0,51, p=0,002, функциональной остаточной емкостью Helium (FRC) r=-0,48, p=0,004, ITGVr=-0,3, p=0,038, VAr=-0,35, p=0,04. Функциональное состояние бронхолегочного аппарата было связано с переносимостью физических нагрузок. Корреляция между расстоянием, пройденным при тредмилметрии, резервным объемом выдоха (ERV) составила r=0,52, p=0,002, сITGVr=0,36, p=0,039. Корреляция максимальной ЧСС при тредмилметрии с ЖЕЛ составила r=0,39, p=0,012, с ФЖЕЛ r=0,32, p=0,045, с ОФВ1 r=0,43, p=0,006, с альвеолярным объемом - r=0,48, p=0,009. Dlco коррелировала с сердечным выбросом r=0,34, p=0,045.

При оценке результатов с помощью должных величин распределение больных по типам нарушения вентиляции было следующим. У 44% пациентов с ХСНнФВ не выявлено нарушений вентиляции, у 39% выявлен рестриктивный, у 1,7% (одного пациента, который был исключен из последующего анализа) – обструктивный, у 15,3% - смешанный тип вентиляционных нарушений. Хотя клинически данных за наличие обструктивного компонента не было.

При оценке результатов с помощью LLN, индекс Генслера чаще укладывался в диапазон нормальных значений, т.е., как и на основании
клинико-анамнестических данных, обструктивный компонент у большинства пациентов не был подтвержден. Обструктивный тип нарушения вентиляции был выявлен всего у 1 больного (1,7%, того, который был исключен из последующего анализа, см выше), смешанный тип – всего у 2 пациентов (3,4%), рестриктивный тип - у 50,9%, норма - у 44%. У 11,9% больных с ХСН при применении LLN вместо смешанного был диагностирован рестриктивный тип нарушения вентиляции. При использовании для оценки результатов LLN паттерн вентиляционных нарушений лучше соответствовал клинико-анамнестическим данным, что позволяет предположить, что использование LLN для интерпретации результатов ФВД при ХСН является более целесообразным, чем применение % от должного.

Больные с рестриктивным и смешанным типом вентиляционных нарушений и без них достоверно не отличались по возрасту, полу, ИМТ, АД, СДД, объективной и субъективной выраженности клинической симптоматики, этиологии ХСН, длительности ХСН в анамнезе, количеству инфарктов миокарда в анамнезе, табакокурению, переносимости физических нагрузок, структурно-функциональному состоянию сердца, СКФ, ЭАМ. При этом у больных с рестриктивным и смешанным типом вентиляционных нарушений была ниже концентрация натрия и хлоридов в сыворотке крови и выше концентрация С-реактивного белка и фибриногена в сыворотке крови, ниже скорость почечного кровотока, чем у пациентов без них (Таблица 3.44, Рисунок 3.27).

Таблица 3.44. Сравнительная характеристика больных с ХСНиФВ с и без вентиляционных нарушений рестриктивного и смешанного типа.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>С нарушениями вентиляции (n=63)</th>
<th>Без нарушений вентиляции (n=79)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Натрий крови, ммоль/л</td>
<td>141 (138; 142)</td>
<td>142,5 (140; 144)</td>
<td>0,008</td>
</tr>
<tr>
<td>Хлориды крови, ммоль/л</td>
<td>103 (100; 105)</td>
<td>104 (103; 107,5)</td>
<td>0,033</td>
</tr>
<tr>
<td>С-РБ</td>
<td>20 (0,4; 20)</td>
<td>0 (0; 3,5)</td>
<td>0,013</td>
</tr>
<tr>
<td>фибриноген</td>
<td>3,8 (3,4; 4,2)</td>
<td>3,1 (2,5; 3,7)</td>
<td>0,003</td>
</tr>
<tr>
<td>Vps, см/с</td>
<td>0,57 (0,46; 0,64)</td>
<td>0,70 (0,56; 0,89)</td>
<td>0,018</td>
</tr>
<tr>
<td>Ved, см/с</td>
<td>0,16 (0,11; 0,23)</td>
<td>0,19 (0,16; 0,26)</td>
<td>0,06</td>
</tr>
<tr>
<td>TAMX, см/с</td>
<td>0,27 (0,21; 0,36)</td>
<td>0,33 (0,28; 0,43)</td>
<td>0,021</td>
</tr>
<tr>
<td>COкобщRL, мл/мин</td>
<td>548,2 (421,2; 776,3)</td>
<td>704,8 (555,1; 896,6)</td>
<td>0,09</td>
</tr>
<tr>
<td>COкбазRL, мл/мин</td>
<td>941,9 (718,6; 1332,8)</td>
<td>1122,9 (902,4; 1355,2)</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Рисунок 3.27

Достоверных различий всех перечисленных показателей у больных, получавших различные бета-адреноблокаторы, выявлено не было (p>0,05).

Таким образом, поражение бронхолегочного аппарата встречается более чем у половины больных с ХСН, представлено преимущественно ретрактивными нарушениями исвязаносбольшей выраженностью клинической симптоматики, снижением толерантности к физической нагрузке, активацией системы воспаления и снижением почечного кровотока.

Предикторы и механизмы поражения органов-мишеней

| Гемодинамические предикторы и механизмы

Взаимосвязь поражения различных органов-мишеней с ФВ ЛЖ, СВ, СИ и рядом других показателей гемодинаики рассмотрена в соответствующих разделах. Остановимся на суточном профиле АД как факторе прогрессирования поражения органов-мишеней.

При ХСНфФВ медиана среднесуточного САД составила 110,5 (104,5; 124,0) мм рт.ст., ДАД 69,0 (66,0; 75,0) мм рт.ст. При разделении больных на группы по медиане среднего САД и среднего ДАД, достоверных различий групп по полу, ФК NYHA, этиологии ХСН, гипертензивному анамнезу, параметрам ЭХОкг, альбуминурии, значениям СКФ, МПК, Т-критерия, наличию остеопороза и переломов не выявлено (Таблица 3.44). Пациенты с меньшими значениями среднесуточного ДАД были старше и у них чаще встречался вторичный гиперпаратиреоз (Рисунок 3.28).
Таблица 3.44. Сравнительный анализ больных со значениями среднесуточного САД и ДАД выше и ниже медианы.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>ДАДср>Med (n=26)</th>
<th>ДАДср≤Med (n=26)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст, годы</td>
<td>61,5 (53,0; 66,0)</td>
<td>66 (62; 71)</td>
<td>0,035</td>
</tr>
<tr>
<td>Фибриноген</td>
<td>2,45 (2,05; 2,93)</td>
<td>3,53 (2,74; 4,40)</td>
<td>0,04</td>
</tr>
<tr>
<td>Интактный ПТГ, пг/мл</td>
<td>38,2 (20,3; 83,6)</td>
<td>101,8 (54,6; 158,9)</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Рисунок 3.28

Таким образом, выявлена взаимосвязь гипотонии с развитием вторичного гиперпаратиреоза у больных с ХСНФВ, что может способствовать развитию и других нарушений костно-минерального обмена. Это следует учитывать при дозировании лекарственных препаратов, способствующих снижению АД.

Метаболические предикторы и механизмы

Дислипидемия

Несмотря на длительное наличие сердечно-сосудистой патологии и наблюдение терапевтами и кардиологами, гиперхолестеринемия (>5,2 ммоль/л) выявлялась у 38,7% (95%ДИ 31,0; 46,5%), повышение холестерина липопротеидов низкой плотности (>3 ммоль/л) – у 44,9% (95%ДИ 33,6; 56,2%), снижение холестерина липопротеидов высокой плотности (<1 у мужчин и <1,2 ммоль/л у женщин) – у 38,3% (95% ДИ 27,5; 49,1%), гипертриглицеридемия (≥1,7 ммоль/л) – у 17,6% (95%ДИ 11,4; 23,8%) обследованных больных с ХСНФВ. У больных с ХСНсФВ и ГБ уровень холестерина был достоверно выше, чем при ХСНсФВ (р=0,002 и 0,01 соответственно), что, по всей видимости, было связано с тем что больные с ГБ не получали статины, а из больных с ХСНсФВ статины получал лишь 1 пациент.

Для выявления взаимосвязи нарушений липидного обмена и поражения органов-мишеней пациенты с ХСНФВ были разделены на 2 группы: с и без гиперхолестеринемии (>5,2 ммоль/л, Таблица 3.45). Эти группы
достоверно не различались по возрасту, полу, выраженности ожирения, цифрам АД, генезу ХСН, длительности и тяжести АГ в анамнезе, курению в анамнезе. У пациентов с гиперхолестеринемией значения мочевины и креатинина крови ниже и СКФ выше, чем у остальных. Достоверных различий между группами по альбуминурии, уровню интактного ПТГ, 25гидроксивитамина D, кальцитонина, C-телопептида, остеокальцина, остеопротегерина, МПК, Т-критерию, наличию остеопороза и переломов в анамнезе не выявлено.

Таблица 3.45. Сравнительный анализ больных с гипер- и нормохолестеринемией

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Гиперхолестеринемия (n=60)</th>
<th>Нормохолестеринемия (n=95)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФК NYHA: I/II/III/IV, %</td>
<td>4,29/47,14/41,43/7,14</td>
<td>2,08/19,79/57,29/20,83</td>
<td><0,001</td>
</tr>
<tr>
<td>Мочевина крови, ммоль/л</td>
<td>8,0 (6,35; 8,95)</td>
<td>8,8 (6,8; 11,9)</td>
<td>0,017</td>
</tr>
<tr>
<td>Креатинин крови, ммоль/л</td>
<td>99 (85; 120)</td>
<td>113 (100; 133)</td>
<td>0,005</td>
</tr>
<tr>
<td>СКФМДРД1, мл/мин/1,73м²</td>
<td>65,1 (51,0; 85,0)</td>
<td>57,6 (45,7; 68,7)</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Такие различия между указанными группами пациентов могли быть обусловлены приемом статинов как пациентами с гиперхолестеринемией 49,99%, так и без нее (33,02%). У последних нормальные значения концентрации холестерина в сыворотке могли быть следствием этой терапии. Хотя при формировании групп, получающих и не получающих статины, достоверных различий по СКФ и альбуминурии также не выявлено (p>0,05).

Гиперурикемия

Концентрация мочевой кислоты составила у пациентов ХСНфФВ 418 (354,5; 515) ммоль/л. Гиперурикемия выявлена у 43,8% (95% ДИ 36,0-
52,6%) больных. При этом клинические проявления подагры отмечались у 5 пациентов с ХСНнФВ.

С целью выявления клинико-патогенетического значения гиперурикемии был проведен сравнительный анализ групп больных с повышенным и нормальным уровнем мочевой кислоты в крови (Таблица 3.46). Эти группы были сопоставимы по возрасту, полу, цифрам АД, выраженности ожирения, ФВ и КДО ЛЖ, наличию СД. У больных с гиперурикемией были более выражены одышка, слабость, отеки (по результатам Канзасского, Кафедрального и Миннесотского опросников, ШОКС, р<0,05), был более высокий ФК NYHA, чаще отмечалась АГ в анамнезе с более высокими цифрами САД и ДАД, была ниже переносимость физических нагрузок, вышеприведенные дозы фуросемида, верошпирона, показатель суммарной дозы диуретиков, концентрация мочевины, креатинина, Р сыворотки крови и экскреция альбумина с мочой и ниже СКФ по сравнению с больными с нормоурикемией. Различий между группами по уровням интактного ПТГ, 25гидроксивитамина D, С-телопептида, кальцитонина, остеокальцина и остеопротегерина, а также по МПК, значениям Т-критериев, полученных при денситометрии, не выявлено (р>0,05).

Таблица 3.46. Сравнительный анализ больных с гипер- и нормоурикемией.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>Гиперурикемия (n=66)</th>
<th>Нормоурикемия (n=78)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФК NYHA: I/II/III/IV, %</td>
<td>4,55/24,24/51,52/19,7</td>
<td>3,85/43,59/39,74/12,82</td>
<td>0,02</td>
</tr>
<tr>
<td>Наличие АГ в анамнезе: 0/1, %</td>
<td>12,86/87,14</td>
<td>25,47/74,53</td>
<td>0,026</td>
</tr>
<tr>
<td>Макс САД в анамнезе, мм рт.ст.</td>
<td>180 (160; 200)</td>
<td>160 (130; 200)</td>
<td>0,014</td>
</tr>
<tr>
<td>Макс ДАД в анамнезе, мм рт.ст.</td>
<td>100 (100; 115)</td>
<td>100 (80; 100)</td>
<td>0,001</td>
</tr>
<tr>
<td>Свойство</td>
<td>XCHN</td>
<td>XCHN</td>
<td>p-значение</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Метаболическая активность</td>
<td>2,5 (1,9; 4,5)</td>
<td>4,5 (2,5; 5,6)</td>
<td>0,018</td>
</tr>
<tr>
<td>Гемоглобин крови, г/л</td>
<td>140,5 (131; 151)</td>
<td>150 (141; 159)</td>
<td>0,008</td>
</tr>
<tr>
<td>Альбумин/креатинин ИФА, мг/г</td>
<td>33,3 (14,3; 47,6)</td>
<td>10,7 (2,14; 38,1)</td>
<td>0,008</td>
</tr>
<tr>
<td>ЭАМ (ИТДА), мг/сут</td>
<td>68,4 (39,0; 167,3)</td>
<td>42,0 (1,0; 56,0)</td>
<td>0,016</td>
</tr>
<tr>
<td>Мочевина крови, ммоль/л</td>
<td>10,0 (8,3; 13,1)</td>
<td>7,2 (5,4; 8,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>Креатинин крови, ммоль/л</td>
<td>127,5 (107,5; 148,0)</td>
<td>96 (81; 109,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>Р, ммоль/л</td>
<td>1,30 (1,20; 1,50)</td>
<td>1,22 (1,03; 1,35)</td>
<td>0,008</td>
</tr>
<tr>
<td>Общий белок</td>
<td>68 (64,5; 74,3)</td>
<td>73,5 (69,4; 77,0)</td>
<td><0,001</td>
</tr>
<tr>
<td>Холестерин, ммоль/л</td>
<td>4,63 (3,90; 5,80)</td>
<td>5,00 (4,27; 6,03)</td>
<td>0,045</td>
</tr>
<tr>
<td>Альфа-холестерин</td>
<td>0,95 (0,82; 1,25)</td>
<td>1,19 (1,03; 1,57)</td>
<td>0,018</td>
</tr>
<tr>
<td>СКФМДРД1, мл/мин/1,73м²</td>
<td>47,4 (41,1; 60,0)</td>
<td>72,5 (58,6; 87,4)</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФМДРД2, мл/мин/1,73м²</td>
<td>49,7 (42,7; 60,6)</td>
<td>69,8 (61,5; 87,2)</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФМДРДs, мл/мин/1,73м²</td>
<td>46,8 (40,2; 57,0)</td>
<td>65,7 (57,9; 82,1)</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФСКД-ЕПИ, мл/мин/1,73м²</td>
<td>47,9 (40,1; 59,8)</td>
<td>70,5 (59,7; 87,3)</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Эти данные свидетельствуют о том, что вероятность развития гиперурикемии при ХСН тесно связана с наличием поражения почек как органа-мишени.

Поскольку гиперурикемия является составной частью метаболического синдрома, мы оценили наличие у обследованных больных других его компонентов. У 96,9% наших больных с гиперурикемией выявлялась гипертрофия миокарда ЛЖ. У 57,1% этих больных имелась избыточная масса тела, у 19,6% — ожирение I степени, у 5,4% — ожирение II степени, у
1,8% - III степени. У 47,6% этих больных гиперурикемия сопровождалась гиперхолестеринемией и у 1 больного – гипертриглицеридемией.

Для определения, является ли гиперурикемия при ХСН маркером воспаления, анализ ее взаимосвязи с общепринятым маркером воспаления – С-реактивным белком. Была выявлена сильная корреляция концентрации мочевой кислоты с ним у больных с СКФ(MDRD1)≥90 мл/мин/1,73м² (r=0,72, p=0,019). Причем у этих больных не отмечалось взаимосвязи между концентрацией мочевой кислоты и показателями работы почек. У больных с СКФ<90 мл/мин/1,73м² уровень мочевой кислоты в сыворотке крови с концентрацией С-реактивного белка не коррелировал, однако был связан с показателями функции почек: концентрацией креатинина в сыворотке крови (r=0,56, p<0,001), СКФ, рассчитанной по различным формулам (MDRD1: r= -0,56, p<0,001; MDRD2: r= -0,54, p<0,001), и в меньшей степени с ЭАМ (r=0,29, p=0,031). Таким образом, гиперурикемия при ХСН у больных с сохраненной функцией почек тесно связана с выраженностью хронического воспаления, а у пациентов со сниженной функцией почек является отражением их дисфункции.

У больных с гиперурикемией субъективная выраженность симптомов ХСН была выше, чем у остальных. По результатам заполнения Канзасского опросника, больным с гиперурикемией симптомы ХСН больше мешали пройти один квартал по ровной дороге [3 (2; 4) и 4 (3; 5), p=0,036], работать по дому [2 (2; 3) и 3 (2; 4), p=0,041] и ускорить шаг [1 (1; 2) и 2 (1; 4), p=0,027]. У них была более выражена слабость [3 (2; 5) и 5 (3; 6), p=0,040]. По результатам заполнения Миннесотского опросника, у больных с гиперурикемией была более выражена отечность голеней, стоп [2 (0; 3) и 0 (0; 2), p=0,042]. Но, как отмечалось выше, эти группы различались по выраженности проявлений дисфункции почек и ряду других показателей.

Нарушения углеводного обмена
Сахарный диабет выявлен у 19,6% обследованных больных с ХСН-нФВ. Больные с наличием/отсутствием сахарного диабета были сравнимы по возрасту, большинству показателей ЭХОкг, экскреции альбумина с мо-чой (р>0,05). У больных с сахарным диабетом была более выражена кли-ническая симптоматика: отеки, слабость по результатам заполнения Ка-федрального и Миннесотского опросника, ШОКС, - был выше ФК NYHA (р=0,01), чаще отмечался ИМ в анамнезе (р=0,042), более высокие цифры максимального САД и ДАД в анамнезе, была ниже переносимость физиче-ских нагрузок, выше концентрация мочевины, креатинина, Р сыворотки крови, уровень С-реактивного белка,ниже СКФ, гемоглобин, общий бе-локпо сравнению с больными без сахарного диабета.Различий между групами по уровням интактного ПТГ, 25гидроксивитамина D, С-телопептида, кальцитонина, остеокальцина и остеопротегерина, а также по МПК, значениям Т-критериев, полученных при денситометрии, не выявле-но (р>0,05).(Таблица 3.47).

Таблица 3.47. Сравнительный анализ больных с наличием и без са-харного диабета

<table>
<thead>
<tr>
<th>Параметр</th>
<th>С СД (n=39)</th>
<th>Без СД (n=153)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол: М/Ж, %</td>
<td>69,2/30,8</td>
<td>90,2/9,8</td>
<td><0,001</td>
</tr>
<tr>
<td>Этнология ХСН: ИБС/ГС/ДКМП</td>
<td>92,3/7,7/0</td>
<td>78,6/10,7/10,7</td>
<td>0,025</td>
</tr>
<tr>
<td>Длительность АГ в анамнезе, годы</td>
<td>14 (5,5; 23)</td>
<td>10 (0; 20)</td>
<td>0,041</td>
</tr>
<tr>
<td>Мах САД в анамнезе, мм рт.ст.</td>
<td>190 (160; 220)</td>
<td>180 (140; 200)</td>
<td>0,043</td>
</tr>
<tr>
<td>Мах ДАД в анамнезе, мм рт.ст.</td>
<td>100 (100; 120)</td>
<td>100 (80; 110)</td>
<td>0,023</td>
</tr>
<tr>
<td>МЕТ при тредмилметрии</td>
<td>2,01 (1,93; 2,10)</td>
<td>3,9 (2,5; 5,6)</td>
<td>0,024</td>
</tr>
<tr>
<td>Гемоглобин крови, г/л</td>
<td>138 (123; 145)</td>
<td>148 (139; 159)</td>
<td><0,001</td>
</tr>
<tr>
<td>Мочевина крови, ммоль/л</td>
<td>9,75 (7,3; 16,3)</td>
<td>8,1 (6,1; 9,7)</td>
<td>0,001</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Креатинин крови, мкмоль/л</td>
<td>120 (94,5; 146,5)</td>
<td>106 (89; 119)</td>
<td>0,005</td>
</tr>
<tr>
<td>Р, ммоль/л</td>
<td>1,3 (1,2; 1,56)</td>
<td>1,23 (1,03; 1,38)</td>
<td>0,024</td>
</tr>
<tr>
<td>Общий белок</td>
<td>67,5 (64,0; 74,0)</td>
<td>72 (68; 77)</td>
<td>0,008</td>
</tr>
<tr>
<td>Холестерин, ммоль/л</td>
<td>4,4 (3,8; 6,0)</td>
<td>4,68 (4,0; 6,0)</td>
<td>0,53</td>
</tr>
<tr>
<td>Альфа-холестерин</td>
<td>1,03 (0,8; 1,4)</td>
<td>1,21 (1,0; 1,45)</td>
<td>0,022</td>
</tr>
<tr>
<td>С-реактивный белок</td>
<td>15 (7,2; 31,5)</td>
<td>5,55 (1,0; 20,0)</td>
<td>0,002</td>
</tr>
<tr>
<td>СКФMDRD1, мл/мин/1,73м²</td>
<td>50,2 (38,7; 59,6)</td>
<td>64,2 (50,9; 81,5)</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФMDRD2, мл/мин/1,73м²</td>
<td>53,4 (42,3; 59,8)</td>
<td>64,9 (50,9; 79,4)</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФMDRDs, мл/мин/1,73м²</td>
<td>50,2 (39,8; 56,3)</td>
<td>61,1 (47,9; 74,7)</td>
<td><0,001</td>
</tr>
<tr>
<td>СКФCKD-EPI, мл/мин/1,73м²</td>
<td>51,5 (40,8; 59,2)</td>
<td>64,8 (50,3; 80,3)</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Таким образом, выявлена взаимосвязь гиперурикемии и сахарного диабета с признаками дисфункции почек и костно-минеральными нарушениями при ХСН, что может свидетельствовать о дополнительном вкладе нарушений пуринового и углеводного обмена в поражение органов-мишеней при этом заболевании.

Курение

Учитывая возможность неблагоприятного воздействия курения на функцию почек, мы провели сравнительный анализ данных, полученных в группах курильщиков (n=26, 37,1%) и некурящих. Достоверных различий показателей функционального состояния почек обнаружено не было. Возможно, это связано с тем, что большинство (за исключением 6 человек) не куривших во время наблюдения больных, являлись активными курильщиками в анамнезе.

Достоверных различий функционального состояния почек и почечной гемодинамики у мужчин и женщин, включенных в исследование, не отмечалось, что, возможно, обусловлено абсолютным преобладанием первых в проведенной работе.

Воспаление
Несмотря на отсутствие активных воспалительных процессов у больных, концентрация С-реактивного белка в сыворотке крови составила 2,6 (0-20,0) мг/л, концентрация фибриногена в плазме крови – 3,4 (2,8-4,0) г/л. Как указывалось выше, концентрация С-реактивного белка была достоверно выше у пациентов с поражением почек и гиперфосфатемией.

Генетические предикторы и механизмы

Полиморфизм Gln27Glu гена ADRB2 при ХСН

Ген ADRB2 кодирует β2 адренергический рецептор. Мы изучили взаимосвязь полиморфного маркера Gln27Glu гена ADRB2 с выраженностью клинической симптоматики и поражением органов-мишеней у больных с ХСН и ФВ. Распределение генотипов (Glu/Glu, Glu/Gln и Gln/Gln) среди обследованных составило 25,8%, 45,5% и 28,7%, соответственно.

У больных с генотипом Gln/Gln выявлялась более тяжелая ХСН (Рисунок 3.29). Длительность АГ в анамнезе была больше у носителей Glu/Glu генотипа (14(6,5-26), 10 (1-14), 0(0-7) лет у больных с Glu/Glu, Glu/Gln, Gln/Gln генотипами соответственно, p=0,028).

Рисунок 3.29

При суточном мониторировании ЭКГ у больных с Glu/Glu генотипом были ниже минимальная ЧСС (40(36-42), 47(43-49), 49(44-61) в минуту у больных с Glu/Glu, Glu/Gln, Gln/Gln генотипами соответственно, p=0,015) и длиннее максимальные интервалы RR (2248(1736-2960), 1760 (1624-1888), 1564(1488-1728) мс у больных с Glu/Glu, Glu/Gln, Gln/Gln генотипами, p=0,05). Взаимосвязь полиморфного маркера Gln27Glu с другими параметрами суточного мониторирования ЭКГ, результатами СМАД и теста с 6-минутной ходьбой, показателями диастолической функции ЛЖ (в т.ч. E/A, E/Em), ФВ ЛЖ, СКФ, ЭАМ не было.

Таким образом, среди обследованных больных с ХСН у носителей генотипа Gln/Gln полиморфного маркера Gln27Glu гена ADRB2 выявлена большая выраженность клинической симптоматики, у носителей генотипа Gln/Gln.
Glu/Glu – более выраженная тенденция к брадикардии и большая длительность АГ до развития СН. Для уточнения клинической значимости этих данных необходимы дальнейшие исследования.

Полиморфизм C825T гена GBN3у больных с ХСН

Ген GNB3 кодирует субъединицу β3 G белка, который участвует в передаче внутри клеток сигналов, контролирующих тонус сосудов и пролиферацию многих типов клеток. Мы изучили взаимосвязь полиморфного маркера C825T гена GNB3c выраженностю клинической симптоматики и поражением органов-мишеней у больных с ХСНиФВ.

Распределение генотипов (CC, CT и TT) среди обследованных больных составило 71,2%, 19,7% и 9,1%, соответственно. В 1-ю группу были включены пациенты с генотипом CC, во 2-ю группу – с генотипами CT и TT. Различий по возрасту, массе тела, АД, ФК, анамнестическим особенностям ИБС и АГ между пациентами 1-й и 2-й групп не было (p>0,05). У носителей генотипа CC по сравнению с остальными больными отмечалась большая длительность ХСН [4,5(1,5-11) и 2(1-4) года, p=0,036] и меньшая ФВ ЛЖ [32,4(25,4-38,3) и 37,3(32,4-43,1)% соответственно, p=0,03]. ЭАМ [12,8(8,1-23,0) и 6,0(5,7-6,2) мг/сутки, p=0,036] и минеральная плотность костной ткани [МПК: 0,9(0,8-1,1) и 0,8(0,7-0,9)г/см2, p=0,041] были выше у больных 1-й по сравнению со 2-й группой (Рисунок 3.30). У больных с генотипом CC при суточном мониторировании ЭКГ были достоверно более длительные максимальные интервалы RR, чем у остальных [1824(1736-2288) и 1632(1492-1956) мс, p=0,041]. Взаимосвязь полиморфного маркера C825T с показателями диастолической функции ЛЖ (в т.ч. E/A, E/Em), гипертрофией ЛЖ, СКФ, результатами СМАД и переносимостью физических нагрузок (по результатам 6-минутного теста) не было.

Рисунок 3.30

Таким образом, среди обследованных больных с ХСН у носителей генотипа CC полиморфного маркера C825T гена GNB3 выявлен больший
риск снижения систолической функции ЛЖ, замедления проводимости, повышения ЭАМ и меньший риск остеопороза по сравнению с носителями генотипов СТ и ТТ. Для уточнения клинической значимости этих данных необходимы дальнейшие исследования.

Полиморфизм Pro72Arg гена TP53 у больных с ХСН

Мы изучили взаимосвязь полиморфного маркера Pro72Arg гена регулятора апоптоза TP53 с выраженностью клинической симптоматики и поражением органов-мишеней у больных с ХСНиФВ. Распределение генотипов (Pro/Pro, Pro/Arg и Arg/Arg) среди обследованных составило 69,2%, 26,2% и 4,6% соответственно.

В 1-ю группу были включены пациенты с генотипом Pro/Pro, во 2-ю группу – с генотипами Pro/Arg и Arg/Arg. Различий по возрасту, массе тела, АД, субъективной выраженности симптоматики, переносимости физической нагрузки, ФК, анамнестическим особенностям АГ между пациентами, выраженностью систолической дисфункции, гипертрофцией миокарда ЛЖ, СКФ, ЭАМ, параметрам почечной гемодинамики, СМАД, ДРА у 1-й и 2-й групп не было (p>0,05).

Среди больных с генотипом Pro/Pro инфаркт миокарда в анамнезе был у 71,1%, среди остальных пациентов – у 95% (χ² p=0,031). У носителей генотипа Pro/Pro по сравнению с остальными время, прошедшее после последнего инфаркта миокарда было меньше [3 (2,0-5,0) и 6,5 (5,0; 13,0) года, p=0,012]. У носителей генотипа Pro/Pro по сравнению с остальными была ниже скорость движения фиброзного кольца митрального клапана (Embок 0,133 (0,100; 0,148) и 0,153 (0,144; 0,197) м/с, p=0,032) и выше объемы предсердий (для ПП 50,1 (41,7; 78,0) и 103,2 (87,6; 119,4) мл, p=0,01), т.е. указанные генотипы различаются по особенностям диастолической функции миокарда ЛЖ. У носителей генотипа Pro/Pro по сравнению с остальными были ниже уровни ЩФ (182 (154; 219) и 229 (187; 285) ЕД/л, p=0,023) и прямого билирубина в сыворотке крови (3,5 (2,8; 6,6) и 12,3 (11,9; 30,0) мкмоль/л, p=0,024, Рисунок 3.31 и 3.32). У носителей генотипа
У больных с генотипом Pro/Pro при суточном мониторировании ЭКГ ЖТ выявлена у 27,8%, у остальных – у 62,5% ($\chi^2 p=0,09$). Максимальная продолжительность ЖТ у больных 2 группы была выше, чем у первой (0 (0;0) и 1,5 (0;2) секунды, $p=0,028$).

Таким образом, среди обследованных больных с ХСН у носителей аллели Arg-gena TP53 взаимосвязан с риском развития поражения печени с развитием холестатического синдрома и склонностью к ЖТ. Для уточнения клинической значимости этого необходимы дальнейшие исследования.

Поражение органов-мишеней и лекарственная терапия ХСН

Почти все больные, включенные в исследование, принимали один из трех ингибиторов АПФ (энальприл, периндоприл, фозиноприл) или антагонист рецепторов ангиотензина II (лозартан). Двум пациентам эти препараты не были назначены в связи с выраженной гипотензиеи и одному пациенту также в связи со склонностью к гипотонии был назначен каптоприл в дозе 12,5 мг/сутки. Перед выпиской из стационара и далее вне стационара эналаприл в дозе 10 (10; 20) мг получали 44,0%, периндоприл в дозе 2,5 (2,0; 2,5) мг - 32,9%, фозиноприл в дозе 20,0 (10,0; 20,0) – 17,8%, лозартан в дозе 25 (25; 50) – 5,3%.

При разделении больных на 3 группы в зависимости от принимаемого в течение не менее 3 месяцев ингибитора АПФ была выявлена тенденция к более низким значениям СКФ СКД-EPI у пациентов, получавших лозартан и фозиноприл и более высоким значениям у больных, получавших периндоприл (рисунок 3.34).
Однако в процессе дальнейшего наблюдения достоверных изменений СКФ на фоне приема периндоприла, фозиноприла и лозартана не было (р>0,05). На фоне лечения эналаприлом СКФ СКД-EPI через 3-12 месяцев наблюдения изменилась с 61,5 (48,5; 80,2) до 61,3 (50,8; 76,7) мл/мин/1,73 м2, р=0,023 (n=30), что является клинически незначимым.

β-АБ получали 95,7% больных с ХСНнФВ. Метопролола тартрат в дозе 50 (25; 75) мг, бисопролол в дозе 3,125 (2,5; 5,0) мг, карведилол 12,5 (6,25; 25) мг. В течение 3-12 месяцев метопролол принимали 19,8%, бисопролол – 64,2%, карведилол – 11,7%. Нами были подобраны группы пациентов, принимавших в течение не менее 3 месяцев метопролол (n=25), бисопролол (n=50), карведилол (n=19). Оказалось, что значения СКФ СКД-EPI были наименьшими у пациентов, не получавших β-АБ, максимальными - у больных, получавших карведилол (рисунок 3.35).

Рисунок 3.35

При повторном обследовании этих пациентов через 3-12 месяцев на фоне лечения метопролола тартратом и бисопрололом СКФ достоверно не изменялась, тогда как на фоне лечения карведилолом отмечалось ее достоверное снижение с 77,7 (64,6; 90,0) до 63,8 (51,1; 77,5), р=0,047 (n=10). Возможно, это обусловлено своеобразным эффектом «ускользания» от α-блокирующего действия карведилола, для подтверждения этого требуются дальнейшие исследования.

Достоверных различий по уровню экскреции альбумина с мочой, СКФ и параметрам почечной гемодинамики у обследованных больных, получавших различные β-адреноблокаторы, выявлено не было. При этом концентрации мочевой кислоты и кальция в сыворотке были достоверно ниже у больных, получавших карведилол, чем у больных, принимавших метопролол и бисопролол.

94% пациентов с ХСНнФВ получали терапию антикоагулянтами и/или дезагрегантами. 22% пациентов с ишемическим генезом ХСН получали ацетилсалициловую кислоту в дозе 100 (75; 100) мг. 54%, у большины-
ства из которых была постоянная форма фибрилляции предсердий, получали антикоагулянтную терапию (81,8% варфарином в дозе, необходимой для поддержания МНО в диапазоне 2,0-3,0, 2,3% ривароксабан 20 мг/сутки, 15,9% дабигатран 110 мг* 2 р/д). 18% получали двойную антиагрегантную терапию ацетилсалициловую кислоту и варфарин.

Больные, получавшие аспирин, имели меньшую выраженность клинической симптоматики и потребность в диуретиках, большие значения ФВ ЛЖ и УИ ЛЖ. Но несмотря на более благоприятный функциональный и эхокардиографический статус, концентрация креатинина в сыворотке крови у пациентов, получавших аспирин, была выше, а СКФ (MDRD2) ниже, чем у остальных (Таблица 3.48). Причем при повторном обследовании через 3 месяца после первичного концентрация креатинина в сыворотке крови у больных, получавших аспирин, также была выше, чем у больных, не получавших его [110 (91; 137) и 88,3 (76; 108) мкмоль/л, р=0,018], хотя четкой взаимосвязи между ухудшением функции почек в течение 3 месяцев и приемом аспирина не было отмечено. Худшее функциональное состояние почек можно объяснить как приемом этого препарата, так и ишемическим генезом ХСН у всех больных, получавших аспирин. Поскольку на второй из перечисленных моментов воздействовать достаточно сложно, можно предположить, что отмена аспирина назначение антикоагулянттовбольным с ХСН может способствовать улучшению работы почек.

Таблица 3.48. Сравнительный анализ групп больных, получавших (1 группа) и не получавших малые дозы аспирина (2 группа)

<table>
<thead>
<tr>
<th>Показатель</th>
<th>1 группа (n=33)</th>
<th>2 группа (n=37)</th>
<th>р</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФК ШОКС</td>
<td>II (II; III)</td>
<td>III (II; IV)</td>
<td>0,017</td>
</tr>
<tr>
<td>Сумма баллов ШОКС</td>
<td>5 (4; 7)</td>
<td>7 (5; 12)</td>
<td>0,020</td>
</tr>
<tr>
<td>СДД</td>
<td>1 (0,83; 1,83)</td>
<td>1,33 (0,83; 2,66)</td>
<td>0,059</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>30,4 (25,9; 36,9)</td>
<td>26,9 (20,1; 32,3)</td>
<td>0,041</td>
</tr>
<tr>
<td>УИ ЛЖ, мл/м²</td>
<td>24,8 (20,3; 29,4)</td>
<td>21,2 (16,8; 24,0)</td>
<td>0,040</td>
</tr>
<tr>
<td>Креатинина сыворотки</td>
<td>104 (90; 120)</td>
<td>88 (76; 108)</td>
<td>0,003</td>
</tr>
</tbody>
</table>
При анализе функционального состояния почек оказалось, что у больных, получавших двойную антитромботическую терапию СКФ была ниже, чем у пациентов остальных групп (Рисунок 3.36). Это необходимо учитывать при решении вопроса о целесообразности ее назначения.

Рисунок 3.36

Для оценки влияния диуретической терапии на функцию почек и почечную гемодинамику был проведен корреляционный анализ. Оказалось, что расчетная суммарная доза диуретиков (СДД), требующаяся для поддерживающей терапии больных с ХСН, коррелировала с параметрами общего и базального объемного почечного кровотока (SI_{обш}RL: r=-0,49, p<0,001; SI_{общ}RL: r=-0,44, p<0,001; CO_{баз}RL: r=-0,44, p<0,001; CO_{общ}RL: r=-0,41, p<0,001), линейными скоростями кровотока (Ved: r=-0,45, p<0,001; TAMX: r=-0,33, p=0,005) и внутрипочечными индексами сопротивления (PI: r=0,46, p<0,001; RI: r=0,44, p<0,001). Это можно объяснить тем, что, с одной стороны, диуретики могут снижать объем циркулирующей крови и, следовательно, почечный кровоток, а с другой стороны, снижение почечного кровотока может приводить к увеличению потребности в диуретической терапии.

Взаимосвязи дозы диуретиков с экскрецией альбумина с мочой не было. Однако отмечалась отрицательная взаимосвязь СДД и СКФ (MDRD1: r=-0,32, p=0,005; MDRD2: r=-0,24, p=0,035).

Влияние поражения органов-мишеней на прогноз у больных с ХСН

Продолжительность наблюдения за пациентами до момента смерти или конца исследования колебалась от 1 до 123 мес. Продолжительность жизни пациентов с ХСНфВ за время нашего наблюдения составила 26 (12 – 60) месяцев. За этот период из 149 пациентов с ХСНфВ, судьбу кото-
рых удалось проследить (с пациентами, о которых не было получено информации, 3 раза произведена попытка связаться по телефону, после чего направлены письма на домашний адрес с просьбой предоставить имеющуюся информацию), умер 101 человек (67,8%).

42% из них умерло внезапно в домашних условиях или на улице при повседневной активности, 16% умерло при явлениях прогрессирующей СН, 5% вследствие ТЭЛА, 5% в результате острого ИМ, 7% - в результате ОНМК, 5% вследствие терминальной ХПН, 7% вследствие раковой интоксикации (Рисунок 3.37). Одному пациенту с ХСНФВ III ФК в стабильном состоянии была предложена и проведена трансплантация сердца в НИИТиИО, через 12 часов после которой он скончался.

Рисунок 3.37

Среди пациентов с ХСНФВ и остеопорозом (n=10) 40% умерли внезапно, вероятнее всего вследствие развития фатальных аритмий, 20% - от ТЭЛА (половина из них после перелома шейки бедра, половина – без связи с переломами), 10% - от ОНМК, 10% - от прогрессирующей СН, 10% от прогрессирования онкологического процесса, диагностированного после включения в исследование.

За время наблюдения у 9 пациентов с ХСНФВ развилась постоянная форма фибрилляции предсердий (ФП). У 13 пациентов с нормальным уровнем гликемии при включении в исследование развился сахарный диабет 2 типа (СД). У 1 пациента с ХСНФВ на фоне гипертонического сердца и у 1 больного с постинфарктным кардиосклерозом развился инфаркт миокарда (ИМ). У 9 пациентов за время наблюдения произошло острое нарушение мозгового кровообращения (ОНМК). Тромбэмболия легочной артерии (ТЭЛА) развилась у 10 пациентов.

Мы сравнили пациентов, у которых за время наблюдения развилось тяжелое сердечно-сосудистое событие (ИМ, ОНМК или ТЭЛА) и остальных. Эти события только у мужчин, достоверно чаще тех, которым не проводилось стентирование/АКШ/МКШ, у которых был более длительный
стаж курения. У пациентов с развитием этих осложнений были более высокие значения концентрации гемоглобина, креатинина, гематокрит, большее количество желудочковых экстрасистол при ХМ-ЭКГ, ниже значения СКФ (Таблица 3.49).

Таблица 3.49. Сравнительный анализ больных с развитием инфаркта миокарда, остrego нарушения мозгового кровообращения или тромбэмболии легочной артерии и остальных.

<table>
<thead>
<tr>
<th>Параметр</th>
<th>С ИМ/ОНМК/ТЭЛА (n=21)</th>
<th>Без ИМ/ОНМК/ТЭЛА (n=58)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол: М/Ж, %</td>
<td>100/0</td>
<td>81/19</td>
<td>0,03</td>
</tr>
<tr>
<td>Стент, АКШ, МКШ/Нет, %</td>
<td>5,9/94,1</td>
<td>29,6/70,4</td>
<td>0,045</td>
</tr>
<tr>
<td>ИКЧ, пачек/лет</td>
<td>12 (0; 30)</td>
<td>0 (0; 13,5)</td>
<td>0,037</td>
</tr>
<tr>
<td>Стаж курения, годы</td>
<td>24 (0; 39)</td>
<td>0 (0; 20)</td>
<td>0,047</td>
</tr>
<tr>
<td>Гемоглобин крови, г/л</td>
<td>155 (142; 164)</td>
<td>144 (133; 153)</td>
<td>0,017</td>
</tr>
<tr>
<td>Гематокрит, %</td>
<td>44,8 (42,3; 47,7)</td>
<td>40,8 (38,8; 44,7)</td>
<td>0,040</td>
</tr>
<tr>
<td>Количество ЖЭС в сутки</td>
<td>2071 (796; 9575)</td>
<td>513 (107; 895)</td>
<td>0,013</td>
</tr>
<tr>
<td>Количество ЖЭС в час</td>
<td>202 (65; 589)</td>
<td>46 (15; 72)</td>
<td>0,025</td>
</tr>
<tr>
<td>СКФСКД-ЕПИ, мл/мин/1,73м²</td>
<td>50,8 (43,7; 63,4)</td>
<td>63,9 (51,1; 78,8)</td>
<td>0,054</td>
</tr>
<tr>
<td>Креатинин крови*, мкмоль/л</td>
<td>127 (117,5; 184,5)</td>
<td>115 (104; 126)</td>
<td>0,038</td>
</tr>
<tr>
<td>СКФСКД-ЕПИ*, мл/мин/1,73м²</td>
<td>49,3 (35,0; 57,0)</td>
<td>57,1 (50,0; 64,1)</td>
<td>0,049</td>
</tr>
</tbody>
</table>

*- перед окончанием наблюдения.

За время наблюдения онкологическая патология была диагностирована у 8 пациентов с ХСНнФВ через 1 год и более после включения в ис-
следование. У одного пациента через 2 года после включения в исследование диагностирован центральный эндобронхиальный рак правого легкого, метастатическое поражение печени. У трех пациентов — рак простаты через 5 лет, 14 (умер через 3 года после этого) и 11,5 месяцев соответственно после включения. У одного больного — рак головки поджелудочной железы через 4 года после включения. У одного пациента через 12 месяцев после включения в исследование был диагностирован рак прямой кишки, через 21 месяц после включения в исследование пациент скончался. 2 пациента поставлены на учет и наблюдаются онкологом, диагноз не знают. Эти пациенты были исключены из анализа поражения органов-мишеней.

Среди пациентов с ХСнсФВ и ГБ онкологической патологии в процессе наблюдения не было выявлено ни у одного больного (р>0,05).

Среди пациентов с ХСнсФВ прослежена судьба 21 человека, летальных исходов не выявлено (Рисунок 3.38). Инфаркт миокарда за время наблюдения развился у одного больного с ХСнсФВ. СД также развился у одного больного. ФП, ОНМК, ТЭЛА у больных с ХСнсФВ за время наблюдения не было.

Рисунок 3.38
Среди больных с ГБ удалось получить информацию о 28 пациентах, из которых умерло 2 человека (7,14%). Информацию о причине смерти у одного больного с ГБ не удалось получить, 2-й пациент умер от ОНМК. Еще у 1 пациента развился ОНМК без летального исхода. СД за время наблюдения развился у 3 пациентов, ОИМ - у одного пациента, ФП - у 1 пациента. ТЭЛА за время наблюдения не было.

Умершие и выжившие больные с ХСнФВ достоверно не различались по полу, возрасту, ИМТ, АД, этиологии и длительности ХСН, наличию, длительности и тяжести АГ в анамнезе, количеству и времени после последнего перенесенного инфаркта миокарда, гемоглобину, холестерину крови и многим другим исследованным биохимическим показателям крови и мочи (р>0,05). Достоверных различий по принимаемым препаратам из
групп ингибиторов АПФ и β-адреноблокаторов между умершими и выжившими не было.

В нашем исследовании выживаемость у больных с диагностированным при включении в исследование III-IV ФК NYHA была ниже, чем у больных I-II ФК NYHA (Рисунок 3.39).

Рисунок 3.39
Выживаемость больных с ХСНиФВ с ФВ ЛЖ, меньше медианы, была достоверно ниже, чем остальных (Рисунок 3.40). Выживаемость была хуже у пациентов с более выраженной легочной гипертензией (Рисунок 3.41).

Рисунок 3.40
Рисунок 3.41

Переносимость физических нагрузок достоверно различалась у умерших и выживших больных. Пациенты, умершие в процессе наблюдения, были способны выполнить меньшую работу по сравнению с выжившими [93 (80; 137) по сравнению с 165 (111; 241) кДж, р=0,04]. Разделение больных на группы по медиане выполненной работы подтвердило прогностическое значение этого показателя (Рисунок 3.42). Аналогичное прогностическое значение имела мощность выполненной нагрузки (Рисунок 3.43). Кроме того, была выявлена тенденция к меньшей выживаемости больных, принимавших мочегонные в расчетной СДД ≥ 1,33, по сравнению с теми, у кого СДД была ниже (р_{CF}=0,062, р_{LR}=0,055, р_{GW}=0,057).

Рисунок 3.42
Рисунок 3.43

Нормальная концентрация натрия в сыворотке крови (135-140 ммоль/л) отмечалась у 32%, гипонатриемия – у 4%, гипернатриемия – у 64% пациентов. Смертность больных с гипонатриемией была достоверно выше, чем у остальных, р=0,008.

Также было выявлено, что у больных с СКФ<60 мл/мин/1,73м² выживаемость была достоверно ниже, чем у больных с СКФ≥60 мл/мин/1,73м². Наиболее достоверные различия по выживаемости между
Этими группами были получены при использовании 6-компонентной формулы MDRD1 (Рисунок 3.44).

Рисунок 3.44
В группе больных с микро- и макроальбуминурией (ИТДА) выживаемость была ниже, чем у больных с меньшей ЭАМ (Рисунок 3.45).

Рисунок 3.45
Кроме того, выживаемость была ниже в группе больных со значениями общего и базального минутного объемного почечного кровотока ниже медиан этих показателей (Пг=0,028 и 0,037 соответственно). У больных со снижением параметров суммарного объемного почечного кровотока ниже медиан, характерных для 3 стадии ХБП (СОК общ<685 мл/мин/1,73м², СОК баз<343 мл/мин/1,73м²), что, как отмечалось выше, специфично для значимого снижения СКФ, отмечалась тенденция к меньшей выживаемости, чем у остальных (Пг=0,052 и 0,046 соответственно, Рисунок 3.46). Кроме того, смертность была выше при значениях RI выше медианы (Рисунок 3.47).

Рисунок 3.46
Рисунок 3.47
В результате многолетнего наблюдения достоверного влияния наличия/отсутствия постоянной формы ФП на прогноз показано не было (П>0,05 при оценке с помощью логрангового, F критерия Кокса и критерия Гехана-Вилкоксона). Смертность среди больных с ФП составила 54,5%, без нее – 50%, р>0,05.

При оценке функционального состояния почек перед окончанием исследования по истечении в среднем 61 месяца после первичного обследования, было выявлено достоверное снижение СКФ (П=0,009), причем ее снижение было более выраженным у больных с ФП, чем у пациентов с СР [на 29,2 (17,1-39,4) и 9,8 (3,5-13,8) мл/мин/1,73м² соответственно, р=0,019].

Выживаемость больных с гиперфосфатемией была достоверно ниже, чем у больных без нее (Рисунок 3.48). При этом влияния гипокальциемии на выживаемость не выявлено.
Рисунок 3.48
Отмечалась тенденция к меньшей выживаемости за 10 летний период наблюдения у больных с ХСНнФВ со значениями интактного ПГТ в сыворотке крови выше медианы его значений (≥78,6 пг/мл) по сравнению с пациентами, у которых его уровень был выше медианы (Рисунок 3.49). При исключении из анализа пациентов, судьбу которых не удалось проследить, различия стали высокодостоверными.

Рисунок 3.49
Достоверного прогностического влияния наличия остеопороза, снижения 25-гидроксивитамина D, кальцитонина, остеокальцина, остеопротеогерина и C-телопептида выявлено не было.

Смертность пациентов, отказавшихся от лечения остеопороза, была выше, чем получавших терапию (Рисунок 3.50), хотя при оценке с помощью F-критерия Кокса различия были не достоверны.

Рисунок 3.50
После включения в исследование баллонная ангиопластика и стентирование проведены 4 больным, аортокоронарное шунтирование -2 пациентам ХСНнФВ. Четырем пациентам с ХСНнФВ и одному пациенту с ХСНсФВ после включения был установлен постоянный электрокардиостимулятор в связи с синдромом слабости синусового узла (2 – эпизодами асистолии при ХМЭКГ, 1 - приступами Морганьи-Эдамса-Стокса, 1 – симптоматической брадикардией). Одному пациенту с после эпизода желудочковой тахикардии ХСНнФВ имплантирован кардиовертер-дефибриллятор.

К нашему удивлению оказалось, что достоверных различий в выживаемости пациентов с ХСНнФВ, которым было проведено хирургическое вмешательство на сердце (АКШ, МКШ, АП/стентирование КА или установка ПЭКС), и неоперированных больных не было (р_{GW}=0,53). Причем достоверного улучшения прогноза у пациентов ХСНнФВ ишемического генеза, которым были проведены АКШ/МКШ или БАП/стентирование, также не выявлено (р_{GW}=0,13). Это требует дополнительного изучения и ре-
шения вопроса о целесообразности проведения и оптимальных сроках оперативного вмешательства.

Была выявлена тенденция к меньшей выживаемости пациентов с гепатомегалией по сравнению с остальными (Рисунок 3.51). Достоверного прогностического значения отдельных лабораторных показателей функционального состояния печени выявлено не было. Выживаемость была достоверно хуже у пациентов с ХСН со значениями индекса MELD-XI≥11 (Рисунок 3.52). Причем это наблюдалось и во всей группе пациентов с ХСН и у пациентов с ХСНнФВ.

Рисунок 3.51
Рисунок 3.52
Также оказалось, что выживаемость лучше у больных ХСНнФВ с общей емкостью легких выше медианы ее значений, в том числе при оценке по гелию (Рисунок 3.53, 3.54, 3.55). Выживаемость была хуже при значения альвеолярного объема (VA) ниже 80% от должного (рсф=0,03, plr=0,08, pgw=0,07, pcm=0,05). Прогностического значения других параметров, получаемых при комплексном функциональном исследовании внешнего дыхания выявлено не было.

Рисунок 3.53
Рисунок 3.54
Рисунок 3.55
Взаимосвязи полиморфных маркеров изученных генов с выживаемостью не было.

При введении факторов, показавших свое влияние на выживаемость в монофакторном анализе, в регрессионную модель Кокса, было выявлено, что одним из самых сильных прогностических параметров является концентрация неорганического фосфора в сыворотке крови (Таблица 3.50).

Таблица 3.50. Регрессионная модель Кокса многофакторного влияния на выживаемость обследованных больных с ХСНнФВ, p=0,004

<table>
<thead>
<tr>
<th>Параметр</th>
<th>β</th>
<th>Стандартная ошибка</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФК NYHA</td>
<td>0,20</td>
<td>0,27</td>
<td>0,45</td>
</tr>
<tr>
<td>Работа тредмилтеста, кДж</td>
<td>-0,005</td>
<td>0,003</td>
<td>0,13</td>
</tr>
</tbody>
</table>
ФВ ЛЖ, % | -0,037 | 0,022 | 0,091
Фосфор сыворотки, ммоль/л | 0,89 | 0,59 | 0,013
СКФ | -0,020 | 0,01 | 0,043
СКФ СКД-ЕПІ, мл/мин/1,73м2 | -0,020 | 0,01 | 0,043
Интактный ПТГ, пг/мл | 0,002 | 0,002 | 0,46
TLC | -0,023 | 0,019 | 0,23

При пошаговом исключении из этой модели интактного ПТГ, ФК NYHA, TLC, работы при тредмилеметрии прогностическое значение фосфора сыворотки сохранялось и было сопоставимо со значением ФВ ЛЖ и СКФ (Таблица3.51).

Таблица 3.51. Регрессионная модель Кокса многофакторного влияния на выживаемость обследованных больных, р=0,007

<table>
<thead>
<tr>
<th>Параметр</th>
<th>(\beta)</th>
<th>Стандартная ошибка</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ФВ ЛЖ, %</td>
<td>-0,04</td>
<td>0,019</td>
<td>0,030</td>
</tr>
<tr>
<td>Фосфор сыворотки, ммоль/л</td>
<td>1,02</td>
<td>0,54</td>
<td>0,046</td>
</tr>
<tr>
<td>СКФ СКД-ЕПІ, мл/мин/1,73м2</td>
<td>-0,016</td>
<td>0,009</td>
<td>0,050</td>
</tr>
</tbody>
</table>

Таким образом, снижение скорости клубочковой фильтрации, наличие альбуминурии, хронической болезни почек, гиперфосфатемии и вторичного гиперпаратиреоза являются неблагоприятными прогностическими факторами у пациентов с ХСН. Требуется своевременная диагностика этих нарушений и внедрение превентивных стратегий для повышения продолжительности жизни больных с ХСН.
ГЛАВА 4. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ И ЗАКЛЮЧЕНИЕ

Иронический провал успеха – так называют парадоксальную ситуацию при которой снижение смертности при инфаркте миокарда в развитых странах не уменьшает общую смертность от сердечно-сосудистых заболеваний, что связано с увеличением смертности от ХСН. За один год в РФ умирают от 880 до 960 тыс. больных сердечной недостаточностью. Нужно быть готовым к тому, что через 10-20 лет каждый второй или третий пациент после посещения кардиолога (или терапевта) будет покидать кабинет врача с диагнозом СН.

В современной версии Рекомендаций Европейского общества кардиологов по ведению больных с СН приоритетным названо изучение клинико-диагностической значимости различных методов визуализации и биомаркеров; изучение особенностей ХСН с кардиоренальным синдромом, сахарным диабетом, анемией другой сопутствующей патологией; изучение эффективности и безопасности немедикаментозных методов лечения; изучение особенностей острой и декомпенсации хронической ХСН [626], что легло в основу нашей работы.

Структурно-функциональное состояние сердечно-сосудистой системы у больных с ХСН
Обследованы три группы пациентов: с ХСН со сниженной, сохранной ФВ ЛЖ и с ГБ. Среди обследованных больных с ХСН преобладали мужчины пожилого возраста. У 80,9% обследованных больных была ишемическая этиология ХСН, у 76,5% - артериальная гипертензия в анамнезе. По данным исследования ЭПОХА-О-ХСН, в России ХСН у 2/3 больных ассоциируется с ИБС и у 4/5 – с артериальной гипертензией [2]. Т.е. в изученной группе больных ИБС была причиной ХСН несколько чаще, а артериальная гипертензия отмечалась реже, чем в общероссийской популяции, что обусловлено использованными критериями включения и исключения. АГ присутствовала в течение 10 (0-20) лет довключения, в большинстве случаев была выраженной (3 степени), неадекватно контролированной и леченной. Количество перенесенных инфарктов миокарда варьировало от 1 до 4, причем в большинстве случаев причиной повторных инфарктов миокарда был отказ от вторичной профилактики и коррекции факторов риска, в т.ч. продолжение курения, отказ от контроля АГ, ожирения, дислипидемии и гипергликемии. Это согласуется с современными представлениями и данными эпидемиологических исследований[5].

ХСНсФВрассматривается в настоящее время как отдельное заболевание со своими особенностями [176, 350], специфического лечения, улучшающего выживаемость, для которого пока не разработано[654]. Препараты, эффективные при ХСНиФВ, неэффективны при ХСНсФВ, даже несмотря на то, что они нацелены на нейрогуморальную активацию, которая наблюдается при обоих состояниях[532]. Возможно, что диагностика поражения органов-мишеней и органопротективная терапия при ХСНсФВ станет основой лечения этой патологии.

Поражение почек при ХСН

При оценке поражения почек изучены традиционные биомаркеры, такие как креатинин, его производная расчетная СКФи экскреция альбумина с мочой [251].
Скорость клубочковой фильтрации у больных с ХСН

Несмотря на то, что у большинства больных концентрация креатинина в сыворотке крови была нормальной, СКФ была ниже 60 мл/мин/1,73м2 у 46,6% больных с ХСНнФВ, 26,7% с ХСНсФВ и 18,6% с ГБ. Причем у 3,4% больных с ХСНнФВ отмечалось снижение СКФ даже ниже 30 мл/мин/1,73м2. Причем при ХСНнФВ ХБП выявлялась достоверно чаще и была более выраженной, чем у больных с ГБ.

Существует несколько альтернативных формул для расчета СКФ, однако какая из них оптимальна для больных с ХСН, неизвестно. К сожалению, у нас не было возможности сравнить расчетные и истинные значения СКФ. Поэтому мы применяли наиболее используемые формулы: Кокрофта-Голта, различные модификации формулы MDRD и «наиболее точную и универсальную» в соответствии с эпидемиологическими исследованиями здоровых лиц и пациентов с патологией почек формулу CKD-EPI[67, 554, 614]. Ранее расчет СКФ по формуле CKD-EPI у больных с ХСН практически не осуществлялся и сравнительной оценки этого метода исследования СКФ с использовавшимися ранее не производился [232, 687, 818, 854, 977].

Значения СКФ, рассчитанные с помощью этой формулы у наших больных были достоверно ниже, чем при расчете по формуле Кокрофта-Голта. В то же время результаты определения СКФ по формуле CKD-EPI достоверно не отличались от СКФ, рассчитанной по 6-компонентной формуле MDRD(MDRD1), у больных с ХСНнФВ и достоверно не отличались от СКФ, рассчитанной по 4-компонентной формуле MDRD (MDRD2) у больных с ХСНсФВ и ГБ.

Это согласуется с данными Lin и соавт., которые показали, что у доноров почечного трансплантата при расчете по формуле Кокрофта-Голта значения СКФ были выше истинных [564]. Следовательно, у больных с сердечно-сосудистой патологией для определения СКФ целесообразно ре-
комендовать применение формул CKD-EPIи MDRD и отказаться от применения формулы Кокрофта-Голта.

В большинстве проведенных ранее исследований СКФ оценивалась у больных с ХСН и различной сопутствующей патологией, способной приводить к ее снижению [187, 266, 621]. Распространенность снижения СКФ<60 мл/мин/1,73 м² у больных с ХСН в этих исследованиях составляла 50,2-60,4%, т.е. близкокольковыше, чем в нашей работе. Это обусловлено тем, что среди их участников было большое количество больных старческого возраста (57,2%, средний возраст 75,7±10,9, максимальный - 100 лет в исследовании McClellan), большее количество пациентов с сахарным диабетом (43,9% в указанном исследовании), высокими цифрами АД в момент обследования (66,4%), первичной почечной патологией (до 21% больных имели в диагнозе почечную патологию, в т.ч. хронический глюмерулонефрит и ОПН)[187, 266, 621]. Т.е. в большинствепредшествующих работ, в которых проводилась оценка СКФ, кроме ХСН, имелся целый ряд других причин для ее снижения.

В нашей работе была обследована группа больных с ХСН с минимальным количеством добавочных факторов, способных приводить к поражению почек. Исключались пациенты с первичной патологией почек и почечных сосудов. Были включены единичные пациенты старческого возраста, поскольку величина СКФ после 40 лет снижается каждые 10 лет в среднем на 10 мл/мин [61, 84]. Кроме того, больных с сахарным диабетом в наше исследование было включено 19,6% и было показано, что его наличие приводит к более выраженному поражению почек. Но, очень важно, что даже при изолированной ХСН у двух третей обследованных было выявлено снижение СКФ ниже 90, почти у одной трети – ниже 60 мл/мин/1,73м². Это доказывает то, что даже «изолированная» хроническая сердечная недостаточность может приводить к нарушению функционирования клубочкового аппарата почек[55].
В крупном популяционном исследовании NHANESIII было показано, что среди населения США в возрасте старше 20 лет 1 стадия ХБП была у 3,3%, 2 стадия — у 3,0% и 3 стадия — у 4,3% населения [94, 95, 487]. Очевидно, что распространенность снижения СКФ у больных с ХСН во много раз превышает таковую в общей популяции.

СКФ отражает фильтрацию всех функционирующих нефронов. Снижение СКФ может быть обусловлено непосредственно нарушением процесса фильтрации вследствие повреждения клубочков почек и/или снижения количества действующих нефронов [52, 61]. По данным литературы, общее количество нефронов даже у практически здоровых людей может различаться в десятки раз [294, 451, 452]. Малое их количество может быть результатом нарушения нефрогенеза или воздействия неблагоприятных факторов после его окончания. Было показано, что снижение общего количества нефронов прямо коррелирует с весом при рождении и обратно — с возрастом и средним объемом клубочков. Лица с малым количеством, а также с компенсаторной гипертрофией функционирующих нефронов более склонны к различной патологии почек [294, 451, 452]. Имеются данные, что общее количество нефронов достоверно ниже у больных с артериальной гипертензией [294, 451, 452, 499]. Результаты нашего исследования могут косвенно свидетельствовать о снижении количества действующих нефронов у больных с ХСН. Для проверки этой гипотезы требуются дальнейшие исследования.

Предикторами более выраженного поражения почек при ХСН являлись большая выраженность клинической симптоматики ХСН, ишемическая этиология ХСН, большая длительность и тяжесть АГ в анамнезе, наличие сахарного диабета и фибрилляции предсердий, большая выраженность поражения сердца (ГЛЖ, диастолической дисфункции миокарда ЛЖ, легочной гипертензии, кальциноза клапанов сердца), возраст, активация системы воспаления.
У больных с ХСН ишемического генеза и большим количеством инфарктов миокарда в анамнезе отмечались более низкие цифры СКФ, независимо от показателей ЭХОктг, уровня ЭАМ и параметров почечной гемодинамики. Это согласуется с результатами исследования Hillege и соавт., в котором было показано, что после перенесенного острого инфаркта миокарда СКФ снижалась в среднем на 5,5 мл/мин/год у больных, у которых не развилась ХСН в течение первого года, в отсутствие лечения, и на 0,5 мл/мин/год при лечении ингибиторами АПФ. Тогда как у больных с ХСН среднее снижение СКФ в течение 1 года без лечения было намного большим и составляло 15,7 мл/мин/год, а при лечении ингибиторами АПФ снижалось до 11,3 мл/мин/год [434].

Экскреция альбумина с мочой

Альбуминурия у больных с ХСН начали изучать с 1992 года, когда Eiskjaer и соавт. показали, что у 13 больных с ХСН II-IV ФК скорость экскреции альбумина с мочой была выше, чем у 13 здоровых лиц из группы контроля (12 мкг/мин по сравнению 2,8 мкг/мин, р<0,01) без значительного изменения ЭАМ через 4 недели после начала лечения каптоприлом [307].

VandeWal и соавт. выявили микроальбуминурию по отношению альбумин/креатинин в случайной порции мочи (метод ИТДА) у 32% (95% ДИ 22-42%) из 94 амбулаторно обследованных больных со стабильным течением ХСН III-IV ФК NYHA, получавших ингибиторы АПФ в течение 3 месяцев и более [914]. Jackson и соавт. тем же методом выявили микроальбуминурию у 30% и макроальбуминурию у 11% больных с ХСН – участников программы CHARM. Причем повышение ЭАМ было сходным у больных со сниженной и сохраненной ФВ ЛЖ. Лечение кандесартаном не уменьшало и не предотвращало развитие избыточной ЭАМ [479]. Orea-Tejeda и соавт. показали наличие микроальбуминурии (экскреция альбумина 20-200 мкг/мин в образце мочи, собранной за ночь) у 40% из 30 больных с диастолической и 24% из 42 больных с систолической (ФВ ЛЖ
<45%) ХСН [695], причем около половины больных имело сопутствующий сахарный диабет [479, 695].

У наших больных альбуминурия выявлялась чаще, чем в работе vandeWal, Jackson, Orea-Tejeda и соавт. По всей видимости, это обусловлено тем, что мы определяли ЭАМ не в случайной разовой, а в первой утренней и в суточной моче. Также это может быть связано с этническими различиями обследованных групп больных и разной приверженностью к лечению.

Следует заметить, что частота встречаемости альбуминурии у обследованных нами пациентов с ХСН, так же, как и в других указанных работах, значительно превышала ее распространенность в общей популяции, у больных с сахарным диабетом и артериальной гипертензией, составляющую 6,6-8,3%, 16-32% и 11-40% соответственно [80, 190, 263, 360, 432].

По данным vandeWal и соавт., различий СКФ, рассчитанной по формуле Кокрофта-Голта, в группах больных с и без микроальбуминурии не было [434]. В работе Jackson и соавт. у пациентов с повышением ЭАМ функция почек была хуже, чем у больных с нормальным уровнем ЭАМ [479]. В нашей работе была отмечена слабая отрицательная корреляционная взаимосвязь между СКФ и ЭАМ. Причем при использовании любых способов расчета, СКФ была ниже у больных с уровнем ЭАМ (ИФА, ИТДА), превышающим значение медианы этого показателя.

Почти у четверти обследованных нами больных с альбуминурией А2 (ИТДА) СКФ была нормальной. По-видимому, е е этой части больных имелось начальное повреждение почек без снижения массы действующих нефронов. У 4,3% больных ЭАМ была нормальной, но выявлялось снижение СКФ, которое в данном случае, вероятно, было связано с изолированным снижением количества нефронов без значимого повреждения оставшихся. У большинства больных с альбуминурией выявлялось снижение СКФ. По всей видимости, это обусловлено комбинацией снижения количества и повреждения с нарушением работы оставшихся нефронов.
Поскольку у большинства больных с альбуминурией уровня А2 отмечалось снижение СКФ, этот уровень ЭАМ, по-видимому, следует расценивать не как ранний маркер, а, в большинстве случаев, как признак явной дисфункции почек при ХСН. Т.к. у больных с альбуминурией уровня А1 снижение СКФ встречалось реже, чем у больных с альбуминурией уровня А2, возможно, именно этот уровень ЭАМ следует считать более ранним проявлением повреждения почек при ХСН и уделять его диагностике повышенное внимание.

Учитывая высокую распространенность альбуминурии уровня А2, всем больным с ХСН необходимо определять суточную ЭАМ для своевременного выявления повреждения почек. Причем наилучшим способом оценки ЭАМ при этом заболевании, на основании наших данных, можно считать определение абсолютной концентрации альбумина в моче, собранной в течение суток, что полностью согласуется с данными Houlihan, полученными у больных с сахарным диабетом [446]. При сохранении микро- или макроальбуминурии в течение 3 месяцев и более необходимо диагностировать наличие ХБП [186]. При однократном выявлении микро- или макроальбуминурии у больных с ХСН без очевидных причин, на наш взгляд, целесообразно указывать в диагнозе наличие дисфункции почек.

В работах Eiskjaer и vandeWal с соавт. большое внимание было уделено взаимосвязи ЭАМ и активации РААС, но были получены несколько противоречивые данные. Eiskjaer и соавт. показали, что экскреция альбумина с мочой коррелировала с концентрацией ренина и ангиотензина плазмы [307]. Однако, по данным vandeWal, активность ренина плазмы, концентрация ангиотензина I и II у больных с микроальбуминурией без нее не различались [914]. В нашей работе ЭАМ слабо коррелировала с показателем, характеризующим активность РААС, что согласуется с данными Eiskjaer и соавт., хотя мы не исследовали ее взаимосвязи с абсолютными значениями концентраций различных показателей активации этой системы.
Почечная гемодинамика

Почечная гемодинамика была исследована с помощью новой неинвазивной методики – дуплексного сканирования почечных артерий. Поскольку суммарную информацию о состоянии почечной гемодинамики дает почечный кровоток в основном стволе ПА, именно ему было уделено наше внимание [18]. У всех обследованных больных максимальная скорость кровотока была ниже 180 см/с, а ренально-аортальный индекс – меньше 2, что подтверждает отсутствие у них стенозов или окклюзии почечных артерий, которые могли бы оказывать дополнительное влияние на функцию почек [45]. Из исследования были исключены больные с гемодинамически значимыми пороками сердца, гемодинамической нестабильностью, острым коронарным синдромом или хирургическими вмешательствами на сердце в течение 6 месяцев до включения, чтобы оценить изменения почечной гемодинамики, связанные именно с ХСН, а не с патологией иного рода.

Следует отметить отсутствие единых нормативных значений допплерографии, а также УЗ-морфологии почек. С одной стороны, имеется целый ряд работ, в которых приведены референтные значения, а с другой, они несколько отличаются друг от друга. Поэтому приходилось сравнивать полученные результаты с нормативными значениями, приводимыми различными авторами.

Было выявлено снижение пиковой систолической (Vps) и конечной диастолической скоростей (Ved) кровотока у больных с ХСН по сравнению с нормой. Vps и Ved у больных с ХСН оценивались лишь в одной работе и наши данные полностью с ней согласуются [928]. У обследованных больных были повышены пульсационный (PI) и резистивный (RI) индексы, а также систоло-диастолическое соотношение (S/D). Эти относительные показатели являются «уголнезависимыми», т.е. правильность их определения практически не зависит от точности коррекции угла между направлением распространения ультразвука и продольной осью сосуда, что повышает их диагностическую ценность [49, 50].
Повышение индексов сопротивления на уровне основного ствола ПА и сегментарных артерий может встречаться при различных заболеваниях почек: остром и хроническом гломерулонефрите, хроническом пилонефрите, тубулоинтерстициальным нефrite, неиммунных гломерулопатиях, — и связано с изменениями кровеносных сосудов почек, такими как пролиферативный эндартрииит, артериолосклероз, прогрессирующий фиброз интимы мелких артерий, гипертрофия м[50, 51, 62]. Индексы сопротивления при всех указанных заболеваниях повышаются, а линейные скорости кровотока зависят от нозологии и фазы (обострения или ремиссии) заболевания [62].

По данным ряда авторов, незначительное повышение PI и RI свойственно больным с гипертонической болезнью. Причем Vps в основном стволе ПА при этом не повышается, если нет атеросклеротического поражения ПА, а Ved — снижается за счет увеличения тонуса сосудов микроциркуляторного русла, что приводит к повышению индексов периферического почечного сопротивления [15, 30, 45, 354]. Больным с диабетической нефропатией также свойственно значительное повышение RI и PI, что объясняют наличием микроангиопатии, гломерулосклероза, гиалиноза почечной артерии и ее ветвей [17, 50].

По данным Л.О. Глазун, рост индексов сопротивления на всех уровнях почечного артериального дерева также характерен для больных с хронической почечной недостаточностью (ХПН). RI по мере прогрессирования ХПН увеличивается и достигает максимальных значений в терминальную стадию. Линейные скорости кровотока у больных с ХПН постепенно снижаются. При терминальной ХПН средние значения Vps, Vmean и Ved значительно ниже, чем в контрольной группе. Повышение индексов периферического сопротивления при ХПН объясняют изменениями внутривенечных артериол и капилляров, а также тубулоинтерстициального компонента [17, 18]. У больных с острой почечной недостаточностью также выявляется значительное повышение RI и PI на всех уровнях почечного
артериального дерева в сочетании с выраженным снижением скоростных показателей, в особенности \(\text{Ved} \) и \(\text{Vmean} \), в стадию олигоанурии с последующей постепенной нормализацией по выходе из ОПН[17]. Эти изменения объясняют отеком и лимфогистиоцитарной инфильтрацией интерстиция почек[17, 18, 45].

Т.е. у обследованных больных с ХСН, как и у больных с гипертонической болезнью без сердечной недостаточности, сахарным диабетом, первичной патологией почек, ХПН и ОПН, были повышенны индексы периферического почечного сосудистого сопротивления. Причем повышение значений RI, PI и S/D у больных с ХСН связано, главным образом, со снижением \(\text{Ved} \). Такой же механизм повышения значений этих показателей характерен для больных с гипертонической болезнью без ХСН, выраженной ХПН и ОПН в стадию олигоанурии [17, 45, 50].

По аналогии со сказанным выше, изменения параметров почечной гемодинамики у больных с ХСН могут быть связаны с отеком интерстициальной ткани и изменениями внутривенчного сосудистого русла, такими как гиалиноз почечных артериол и фибропластическое утолщение интимы мелких артерий [431, 783, 786], которые характерны для нефросклероза, развивающегося при тяжелой ХСН.

Назаренко Г.И. на основе литературных данных сделал вывод, что дифференциально-диагностических допплерографических признаков различных диффузных поражений почечной паренхимы не существует[45]. Наши данные подтверждают, что нарушения почечной гемодинамики у больных с ХСН сходны с изменениями, выявляемыми при патологии почек другой этиологии. Это может быть обусловлено общностью механизмов, лежащих в основе нарушений почечной гемодинамики при этих заболеваниях, что наводит на мысль об общих подходах к нефропротекции.

Допплерографические характеристики почечного кровотока у обследованных больных с ХСН были взаимосвязаны с общепризнанными проявлениями дисфункции почек: концентрацией креатинина в сыворотке
крови, СКФ и экскрецией альбумина с мочой. Аналогичная взаимосвязь между показателями допплерографии на различных уровнях почечного артериального дерева и концентрацией креатинина в сыворотке крови, клиренсом креатинина и СКФ показана у больных с гипертонической болезнью и ХПН на фоне хронического гломерулонефрита, сахарного диабета и хронического пиелонефрита {Глазун, 2003 #887; Глазун, 2003 #888; Полещук, 2006 #2708; Petersen, 1995 #902; Сандриков, 2001 #2709; Galesic, 2000 #866}. Взаимосвязь RI и PI с уровнем альбуминурии была выявлена у больных с гипертонической болезнью [30]. У больных с ХСН эти взаимосвязи ранее не исследовались.

По мнению В. Крумм, внутрипочечные индексы сопротивления, являются не столько специфическими маркерами повреждения почек, сколько комплексным показателем податливости, пульсации и периферического сопротивления всего артериального сосудистого русла. Изменение податливости и периферического сопротивления артериального сосудистого русла сопровождается аналогичными изменениями в сосудах почек, а они в свою очередь вносят вклад в снижение СКФ и повышение ЭАМ [534]. Следовательно, изменения почечной гемодинамики при различных заболеваниях сердечно-сосудистой системы могут предшествовать появлению общепризнанных проявлений дисфункции почек и применяться для ранней диагностики дисфункции почек. Результаты нашего исследования косвенно подтверждают точку зрения В. Крумм. Хотя в исследование не включали больных с выраженным повышением концентрации креатинина сыворотки, у большинства из них отмечались значительные изменения почечной гемодинамики.

Показано, что под влиянием ингибиторов АПФ в больных с гипертонической болезнью Вед сосудов почек повышается, а RI, повышенный до назначения препаратов, приобретает нормальные или даже сниженные значения. Такое же снижение индекса резистентности наблюдается у больных с артериальной гипертензией при лечении β-адреноблокаторами, α₁-
адреноблокаторами, антагонистами кальция и петлевыми диуретиками [30, 45]. Т.е. все эти препараты приводят к обратному развитию изменений почечной гемодинамики у больных с гипертонической болезнью. У обследованных нами больных с ХСН количественные характеристики допплерограмм были изменены, даже несмотря на длительное лечение ингибиторами АПФ, β-блокаторами и диуретиками. Это может свидетельствовать о значительно большей выраженности и зачастую необратимости нарушений почечной гемодинамики при ХСН.

Даже у нефро- и урологических больных допплерографические исследования почечного кровотока очень часто ограничиваются лишь оценкой значения резистивного индекса (RI). Работы, в которых приводится оценка линейных скоростей кровотока, немногочисленны, а характеристика объемного почечного кровотока встречается еще реже [17, 18]. Согласно нашим данным, его исследованию методом ДСПА у больных с ХСН посвящена всего лишь одна работа, в которой индекс суммарного минутного объемного кровотока составил у 19 больных с ХСН — 603±145 мл/мин/м² [928]. У большинства обследованных нами больных значения этого показателя были ниже, чем в этой работе, что, по-видимому, обусловлено более тяжелым контингентом больных. При этом результаты нашего исследования хорошо согласуются данными изотопных методов исследования почечной гемодинамики у больных с ХСН [7, 8, 74].

Параметры объемного почечного кровотока, как и традиционно оцениваемые его допплерографические характеристики, у обследованных больных коррелировали с общепризнанными проявлениями дисфункции почек. Известно, без почечной гемодинамики «немыслим ни один из этапов мочеобразования» [61]. Учитывая это, выраженные изменения параметров линейного и объемного почечного кровотока и их взаимосвязь с общепризнанными проявлениями дисфункции почек у пациентов с ХСН, можно использовать состояние почечной гемодинамики при диагностике дисфункции почек у больных с этим заболеванием.
«Золотым стандартом» диагностики является морфологический метод, поэтому его результаты лучше всего применять при анализе точности других диагностических методик[54]. Однако у больных с ХСН прижизненное морфологическое исследование сопряжено со значительными трудностями. Поэтому мы рассчитывали операционные характеристики: чувствительность и специфичность – для метода ДСПА, ориентируясь на степень снижения СКФ, которая считается хорошим маркером функции почек в норме и при различной патологии [94, 95].

В нашем исследовании снижение суммарного общего минутного объемного кровотока (COkобщ,RL) ниже 853 мл/мин/1,73м² или суммарного базального минутного объемного кровотока (COkбаз,RL) ниже 541 мл/мин/1,73м² свидетельствовали о наличии у больного снижения СКФ ниже 60 мл/мин/1,73м² с чувствительностью 85,7% и специфичностью 62,5-65,3%. Более низкие значения минутного объемного кровотока были более специфичны для значимого снижения СКФ, но обладали меньшей чувствительностью. На наш взгляд, учитывая указанные чувствительность и специфичность, снижение объемного почечного кровотока были более специфичны для значимого снижения СКФ, но обладали меньшей чувствительностью. На наш взгляд, учитывая указанные чувствительность и специфичность, снижение объемного почечного кровотока ниже приведенных значений, можно, наряду с повышением концентрации креатинина в сыворотке крови, снижением pСКФ, альбуминурией, использовать в качестве критерия диагностики дисфункции почек при ХСН.

Следует заметить, что показатели почечной гемодинамики у больных ХСН не зависели от наличия артериальной гипертензии в анамнезе. В то же время они четко коррелировали с наличием, длительностью и тяжестью ХСН. На наш взгляд, это подтверждает их значение для диагностики дисфункции почек у больных с этим заболеванием.

Этапы развития поражения почек у больных с ХСН

Было прекрасно продемонстрировано, что поражение почек при сахарном диабете проявляется сначала гиперфильтрацией и «высоким нормальным» уровнем ЭАМ. После этого периода ЭАМ достигает стадии микроальбуминурии. Затем начинает снижаться СКФ и в конечном итоге
развивается ХПН. В это же время ЭАМ достигает уровня протеинурии [Балаболкин, 2002 #3140; Дедов, 2002 #3146]. В общей популяции, по данным исследования PREVEND [Hillege, 2001 #3191], у больных с высоким нормальным уровнем альбумина в моче клиренс креатинина повышен, у больных с микроальбуминурией он становится ниже и явно снижается у больных с протеинурией [Pinto-Sietsma, 2000 #2531; deJong, 2003 #1010]. Подобные результаты о взаимосвязи клубочковой гиперфильтрации и высокой нормальной экскреции альбумина и микроальбуминурии были получены Cerasola и соавт. у больных с эссенциальной гипертензией [deJong, 2003 #1010].

На основании проведенного нами комплексного обследования функционального состояния почек и почечной гемодинамики можно предположить, что ранними проявлениями дисфункции почек у больных с ХСН являются изменения почечной гемодинамики и альбуминурия уровня А1, о большем поражении почек свидетельствует наличие альбуминурии уровня А2 и о выраженной их дисфункции – снижение СКФ ниже 60 мл/мин/1,73м². Однако это предположение нуждается в дальнейшем подтверждении.

Взаимосвязь проявлений поражения почек с выраженностью клинической симптоматики

К настоящему моменту стало понятно, что тяжесть ХСН не всегда определяется нарушением центральной гемодинамики и степенью выраженности систолической и диастолической дисфункции ЛЖ. Было показано, что она зависит также от состояния биомеханики дыхания, артериального сосудистого русла, микроциркуляции, состава мышечной ткани и др. [11, 40].

Известно, что важнейшим показателем функциональных способностей больного и тяжести его состояния, а также предиктором смертности является функциональный класс ХСН, определенный по классификации NYHA[118]. Однако в последние годы было показано, что снижение
СКФ тоже является независимым предиктором смертности у больных с ХСН, даже более сильным, чем ФК NYHA и ФВ ЛЖ [431, 617, 783]. Исходя из этого, мы предположили, что, возможно, не только прогноз, но и функциональные способности, тяжесть состояния и выраженность симптоматики у больных с ХСН могут быть связаны с нарушением функции почек не меньше, чем с нарушением функции сердца.

Действительно, у обследованных нами больных субъективные и объективные характеристики выраженности клинической симптоматики были взаимосвязаны с проявлениями дисфункции почек, а также с параметрами почечной гемодинамики. Причем сила этой взаимосвязи была не меньше, а для почечной гемодинамики даже больше, чем с параметрами ЭХОкт. Это подтверждает наше предположение о том, что выраженность объективных и субъективных проявлений ХСН может зависеть от степени нарушения функции почек не меньше, а в ряде случаев и больше, чем от степени снижения работы сердца.

Eiskjaer и соавт. у 13 больных с ХСН II-IV ФК отмечали взаимосвязь функционального класса NYHA с ЭАМ, а Ситникова М.Ю. – с показателями почечной гемодинамики, оцененной по клиренсу 131I-гиппурана [64, 307]. Наши данные полностью согласуются с ними. Ранее не оценивавшаяся взаимосвязь проявлений дисфункции почек и тяжести клинической симптоматики в соответствии со шкалой ШОКС оказалась сильнее, чем с ФК, оцененному по классификации NYHA. Это связано с тем, что ШОКС при оценке выраженности ХСН ориентируется не только на переносимость физической нагрузки, но и на физиологические данные.

Корреляция выраженности клинической симптоматики ХСН с параметрами объемного почечного кровотока была выше, чем с показателями ЭХОкт. То есть, выраженность объективных и субъективных проявлений ХСН больше зависит от способности организма поддерживать адекватную почечную гемодинамику, несмотря на снижение сократительной способности миокарда, чем от степени снижения последней. Мониторинг состояния по-
чечной гемодинамики при ведении больных с ХСН, по нашему мнению, может помочь производить своевременную коррекцию терапии для снижения частоты декомпенсаций и потребности в стационарном лечении.

Линейные скорости кровотока и индексы сопротивления были взаимосвязаны с выраженностью клинической симптоматики несколько меньше, чем объемные. Вероятно, это связано с тем, что традиционно оцениваемые количественные характеристики допплерограмм не учитывают влияние на почечную гемодинамику компенсаторных механизмов (например, ЧСС и т.д.). Это подтверждает значимость применения у больных с ХСН методик, позволяющих оценивать объемный почечный кровоток.

Heywood высказал предположение о том, что именно нарушение функции почек может быть ключевым фактором, приводящим к задержке жидкости, декомпенсации и госпитализации больных с ХСН, что будущие фармакологические исследования должны быть направлены на создание способов улучшения функции почек и что почки, в некотором отношении, могут быть более важным органом-мишенью при лечении СН, чем само сердце [425]. Наши данные о взаимосвязи выраженности клинической симптоматики ХСН и проявлениями дисфункции почек подтверждают это предположение.

В настоящее время при неэффективности терапевтического лечения ХСН рекомендовано прибегать к хирургическим и механическим методам лечения. Несмотря на их большое разнообразие, уровень доказанности их эффективности и безопасности низок [37]. Даже операция трансплантации сердца, традиционно считавшаяся «средством выбора в лечении финальной стадии ХСН», согласно Рекомендациям ВНОК, «не имеет серьезного будущего» [37]. Учитывая эти данные о взаимосвязи выраженности симптоматики, переносимости физических нагрузок и прогноза при ХСН с параметрами почечной гемодинамики и функционального состояния почек очень актуальны, поскольку они позволяют предположить, что при неэффективности других мероприятий к клиническому улучшению и увеличе-
ну продолжительности жизни больных с ХСН может привести замести-тельная почечная терапия.

Взаимосвязь фибрилляции предсердий и функции почек

Как известно, фибрилляция предсердий (ФП) является самой частой аритмиеи в клинической практике, причем распространенность ее в тече-ние последних десятилетий неуклонно растет[217, 645]. Недавно было по-
оказано, что факторы риска и патогенетические механизмы развития ФП и поражения почек во многом совпадают[945] и проведено большое количе-
ство исследований, направленных на изучение взаимосвязи ФП и функци-
онального состояния почек.

Распространенность ФП среди обследованных нами больных с ХСНнФВ была 38,6% (95%ДИ 28,4-47,6). Это значительно превышает так-
ковую в общей популяции, которая составляет 0,1% в возрасте до 55 лет, 5,8% - в возрасте от 70 до 79 лет, у 9% - в возрасте старше 80 лет [217]. Ре-
езультаты нашего исследования согласуются с данными исследования EROSH, в котором ФП предсердийвывявлялась у 36,9% (95%ДИ 34,3 – 39,5%) больных с ХСН [789] и несколько превышают распространенность ФП среди больных с ХСН из Базы данных исследования ALPHA, в кото-
рой ФП встречалась у21,4% больных [262].

В литературе имеются данные о взаимосвязи ФП и ФК ХСН. Со-
гласно Базе данных исследования ALPHA, встречаемость ФП увеличива-
ется при более высоких значениях ФК ХСН: она выявляется у 10% боль-
ных с ХСН IФК и 30% больных с ХСН III-IV ФК [262]. По данным крупп-
ных рандомизированных исследований, проведенным у больных с ХСН, при I ФК распространенность ФП составляет 5% [90], при IV ФК достигает 50% [876]. В нашем исследовании были оценены отдельные клинические проявления ХСН и показано, что, ФП ассоциируется, главным образом, с выраженностю отечного синдрома, что может быть обусловлено тем, что при сходной степени выраженности кардиальной дисфункции у больных с ФП больше выраженность дисфункции почек.
Прогностическое влияние ФП у больных с ХСН рассматривалось в ряде ретроспективных исследований. Stevenson и соавт. показали, что в период с 1985 по 1989 годы ФП являлась предиктором летальности у больных с ХСН, а в период с 1990 по 1993 годы – нет, что, по-видимому, было связано с улучшением методов медикаментозного ведения больных с этим заболеванием – заменой гидразина и антиаритмиков I класса на ингибиторы АПФ и амиодарон [868]. В исследованиях Dries и Crijns и соавт. было показано, что ФП является предиктором смертности при ХСН [247, 296]. Однако, в других исследованиях влияния ФП на смертность не выявлено [208, 593, 638]. В исследовании Pai и соавт. показано, что ФП является предиктором смертности у больных с ХСН и нормальной (> /=55%) или незначительно сниженной (41-54%) и не является у больных с умеренно (26-40%) или значительно сниженной (< /=25%) ФВ ЛЖ [705]. В исследованиях AFFIRM и RACE показано, что восстановление синусового ритма не снижает летальность по сравнению с контролем ЧСС в общей популяции [348, 918].

Следует заметить, что у больных с конечной стадией болезни почек распространенность ФП варьирует от 7 до 27% [179, 261, 524]. Причем в некоторых исследованиях ФП не являлась независимым предиктором смертности [921] у больных с конечной стадией болезни почек, а в некоторых - смертность и частота госпитализаций [364], а также вероятность тромбэмболических осложнений [225] были выше среди больных с ФП, чем у больных с синусовым ритмом.

У больных с АГ и гипертрофией миокарда ЛЖ, как показано в исследовании LIFE, постоянная форма ФП приводит к повышению общей и сердечно-сосудистой смертности, увеличению количества внезапных смертей, госпитализаций и потребности в проведении процедур реваскуляризации [936]. В нашем исследовании у больных с ГБ постоянной формы ФП не было.
В нашем исследовании наличие ФП не оказывало неблагоприятного влияния на прогноз, что согласуется с результатами большинства международных исследований больных с ХСН. В отличие от многих из них, наше исследование имело проспективный характер. Причем включенные больные длительно наблюдались и получали адекватное лечение под руководством членов исследовательской группы, что, на наш взгляд, существенно увеличивает ценность полученных результатов.

Количество исследований, в которых оценивается взаимосвязь ФП и поражения почек у больных с ХСН, в настоящее время крайне ограничено и требуется пристальное внимание к этой проблеме. В основе взаимосвязи поражения почек и ФП при ХСН могут лежать следующие механизмы. С одной стороны, активация ренин-аниготензин-альдостероновой системы (РААС) может сопровождаться задержкой натрия и воды, дилатацией предсердий и, следовательно, развитием ФП [623]. С другой стороны, независимо от влияния на гемодинамику, активация РААС приводит к патологическому структурному и электрофизиологическому ремоделированию предсердий, что может явиться субстратом для развития ФП [306]. Bukowska и соавт. в экспериментальном исследовании на животных показали, что при ФП снижается экспрессия нейтральных эндопептидаз в почках и увеличивается выработка некротизирующего фактора роста бета (TNF-β), что может индуцировать развитие в них фиброза и воспаления и, следовательно, приводить к нарушению их функции [191]. Согласно нашим данным, изменение работы почек может быть объяснено также снижением кровотока у больных с ФП и ХСН. Для выявления других возможных механизмов взаимосвязи ФП и функции почек при ХСН требуются дальнейшие исследования.

На основании полученных данных, можно предположить, что, с одной стороны, предотвращение развития ФП может оказывать нефропротективное воздействие, а с другой стороны, нефропротективные мероприятия смогут снизить вероятность развития ФП и, следовательно, ее ослож-
нений у больных с ХСН. Siu и Hanna и соавт. показали, что на фоне лечения статинами снижается вероятность развития ФП [410, 851], хотя Tveit и соавт. не выявили такой закономерности [906]. Madrid и соавт. показали, что назначение ингибиторов АПФ и блокаторов рецепторов ангиотензина значительно снижает риск возникновения ФП и ее рецидивов у больных с сердечно-сосудистой патологией и сахарным диабетом [589]. Для уточнения, смогут ли лекарственные препараты, обладающие нефропротективными свойствами, предотвратить развитие ФП у больных с ХСН, необходимы дальнейшие исследования.

Исследование Niigatapreventivemedicinestudy показало, что наличие дисфункции почек в общей популяции связано с большей вероятностью развития ФП, а наличие ФП, наоборот, - с большей вероятностью снижения СКФ<60 мл/мин/1,73м2 и развития протеинурии [945]. В другом популяционном исследовании также показано, что распространенность ФП увеличивается по мере снижения СКФ [465]. Причем наличие у больных с ФП протеинурии или снижения СКФ увеличивает риск развития у них тромбэмболических эпизодов [382].

Среди больных с ИБС, по данным исследования HeartandSoulStudy, при СКФ<62 мл/мин/1,73м2 частота встречаемости ФП в 3 раза выше, чем при СКФ>79мл/мин/1,73м2, у больных с отношением альбумин/креатинин в моче >15 мг/г частота встречаемости ФП в 4 раза выше, чем при отношении альбумин/креатинин <7 мг/г [623].

У больных без выраженной систолической дисфункции левого желудочка, перенесших операции на сердце, вероятность развития ФП увеличивалась по мере снижения СКФ [142].

Взаимовлияние ФП и функционального состояния почек при ХСН изучены недостаточно. В исследовании POSH показано, что фибрилляция предсердий у больных с ХСН относится к независимым предикторам повышения концентрации креатинина в сыворотке крови за время госпитали-
Динамика проявлений поражения почек у больных с ХСН

При компенсации у26% обследованных нами декомпенсированных больных отмечалось значимое повышение концентрации креатинина в сыворотке крови (на ≥10 мкмоль/л), однако оно превышало 26,5 мкмоль/л лишь у 6 человек. В исследовании Krumholz и соавт. увеличение креатинина сыворотки на 26,5 мкмоль/л за время госпитализации наблюдалось у 28%, в работе Weinfeld и соавт. - у 21% больных с ХСН [533]. Большая частота развития значительного ухудшения функции почек в работах этих авторов по сравнению с нашими данными связана с большим количеством сопутствующей внесердечной патологии, оказывающей влияние на работу почек, среди обследованных ими больных. Так, в первой указанной работе 69% больных были старше 75 лет, у 38% был сахарный диабет, у 60% артериальная гипертензия при включении в исследование, у 9% – САД>200 мм рт.ст., у 41% исходная концентрация креатинина в сыворотке крови превышала 1,5 мг/дл [533]. Перечисленные факторы, влияющие на работу почек, были признаны исследователями независимыми предикторами ухудшения функции почек за время госпитализации у больных с ХСН [533], [342, 391]. В нашем исследовании большинства из этих предикторов не было, тем не менее, повышение концентрации креатинина в сыворотке крови наблюдалось. Его предикторами у больных с ХСН без сопутствующей патологии был инфаркт миокарда в анамнезе, длительность ХСН и повышенная активность системы воспаления.

Butler и соавт. показали, что повышение концентрации креатинина в сыворотке крови за время пребывания в стационаре связано с применением антагонистов кальция и высоких доз петлевых диуретиков (199±195 мг/сут) [197]. У большинства включенных в это исследование больных также была различная сопутствующая патология, оказывавшая значительное влияние на функцию почек [197]. Обследованные нами больные не получали...
ли антагонистов кальция, максимальная доза фуросемида у них была 100 мг/сут (препарат в этой дозе для постоянного приема был назначен 1-му больному; значение медианы дозы фуросемида, назначавшейся для постоянного приема, составило 20 (0; 40) мг/сут).

Практически во всех работах, посвященных изучению изменения функционального состояния почек за время госпитализации, рассматривалась динамика только концентрации креатинина в сыворотке крови и реже pСКФ и не изучалась динамика уровня ЭАМ и показателей почечной гемодинамики. В нашей работе состояние почечной гемодинамики при компенсации значительно улучшалось. У большинства обследованных декомпенсированных больных при компенсации ЭАМ снижалась, но у части из них, наоборот, увеличилась. Больные со снижением ЭАМ за время госпитализации получали меньшие поддерживающие дозы спиронолактона по сравнению с больными, у которых отмечалось увеличение ЭАМ. Это согласуется с данными о возможности неблагоприятного воздействия этого препарата на почки, которое было показано в отношении концентрации креатинина крови и СКФ[834]. Результаты нашего исследования подчеркивают необходимость тщательного мониторирования функции почек на фоне приема этого препарата, в том числе ЭАМ.

У больных с более выраженным улучшением клинической симптоматики при выходе из декомпенсации исходная СКФ была выше, аконцентрация креатинина в сыворотке крови - ниже, чем у больных с менее выраженным улучшением. При этом показатели ЭХОкг как исходные, так и после компенсации у них не различались. Это свидетельствует о том, что степень улучшения клинической симптоматики больше зависит от функционального состояния почек, а не сердца. Это подтверждает сделанное предположение, что при невозможности достичь улучшения клинического состояния с помощью традиционных методов, можно попытаться улучшить работу почек, в том числе с помощью заместительной почечной терапии, что может привести к улучшению клинического состояния.
Минерально-костные нарушения

Мы обследовали пациентов с ХСН без сопутствующей патологии, которая могла бы привести к развитию минерально-костных нарушений, в т.ч. ревматической патологии, болезни Педжета, первичного гиперпаратиреоза, тиреотоксикоза, резекции ЖКТ, воспалительных заболеваний кишечника и т.д. Обследованные больные не получали эстрогены, глюкокортикостероиды, соматотропный гормон, L-тироксин и другие лекарственные препараты, влияющие на обмен кальция и фосфора.

Несмотря на это, у 38,4% обследованных больных выявлена гипокальциемия. У больных с гипокальциемией были достоверно более низкие значения МПК. Концентрация кальция в крови не коррелировала с дозой фуросемида, а также дозой других диуретиков и СДД. У 3,3% обследованных больных выявлялась умеренная гиперкальциемия. Гиперкальциемия может развиваться у 1,9% больных, принимающих тиазидные диуретики [41]. Но среди наших больных с гиперкальциемией лишь один получал гипотиазид в дозе 12,5 мг/сутки.

Гиперфосфатемия выявлена у 23,03% пациентов с ХСН, что достоверно выше, чем при ГБ. Гиперфосфатемия чаще выявлялась у больных с большей выраженностью клинической симптоматики (III-IV ФК), с большими цифрами диастолического и среднего АД в анамнезе, альбуминурией, снижением СКФ, активацией системы воспаления, курением. Причем гиперфосфатемия оказалась предиктором повышенной смертности при ХСН. Ранее влияние фосфорного обмена на отдаленный прогноз при ХСН было изучено недостаточно.

При ХПН гиперфосфатемия является одним из наиболее важных факторов риска, связанных с сердечно-сосудистыми заболеваниями. Точные механизмы, лежащие в основе этой взаимосвязи, остаются неясными. Считается, что это связано с гиперпаратиреозом и сосудистыми отложениями кальция, которые являются результатом высокого уровня фосфора. Пациенты на гемодиализе, у которых уровень фосфатов выше целевого
уровня, на 40% выше смертность по сравнению с теми, кто имеет целевой уровень [897].

В недавних наблюдательных исследованиях показана взаимосвязь гиперфосфатемии с сердечно-сосудистой заболеваемостью и смертностью в общей популяции с нормальной функцией почек. Причем более высокий уровень фосфатов даже в пределах нормальных значений тоже был ассоциирован с существением повышением риска ССЗ. Повышение риска было существенным в популяциях больных как с, так и без ССЗ в анамнезе и сохранялось после коррекции сравниваемых групп по другим известным факторам риска.

Кроме того, у больных после хирургических вмешательств с уровнем фосфатов сыворотки >3,8 мг/дл были повышены постоперационная смертность и долгосрочная сердечнососудистая смертность [919].

Независимая взаимосвязь между более высоким уровнем фосфатов в сыворотке, даже в пределах нормальных значений, и риском смерти и сердечно-сосудистых событий также была показана у взрослых с инфарктом миокарда в анамнезе, у большинства из которых фосфор сыворотки был в пределах нормальных значений (hazardratio (HR) 1,27 на 1 мг/дл повышения фосфатов, 95% ДИ 1,02-1,58). Более высокие значения фосфатов в сыворотке были связаны с повышенным риском появления сердечной недостаточности, повторного инфаркта миокарда и композитной конечной точки коронарной смерти или нефатального инфаркта миокарда [902]. Другие исследователи показали, что уровень фосфатов сыворотки положительно взаимосвязан с кальцификацией и стенозом коронарных артерий у больных с предполагаемой ИБС, даже при сохранной функции почек [202, 840] и у молодого здорового контингента [335-337]. В проспективном наблюдательном исследовании лиц без ССЗ и ХБП, более высокие уровни фосфатов у лиц без протеинурии и с rСKФ>90 мл/мин/1,73м2 были ассоциированы с повышенным риском ССЗ [277] и были ассоциированы с большей массой миокарда левого желудочка и повышенным риском сердечной не-
достаточности [276]. В другом исследовании было показано, что более высокий уровень фосфатов был ассоциирован с повышенной смертностью и госпитализациями по поводу ССЗ у взрослых с рСКФ≥60 мл/мин/1,73м² [660]. Но еще в одном исследовании уровень фосфатов в сыворотке не был взаимосвязан с развитием ИБС у мужчин без ХБП [887]. Хотя результаты проведенных исследований несколько противоречивы, на сегодняшний день имеются убедительные доказательства токсичности фосфатов даже при высокой рСКФ [840] и гиперфосфатемия стала рассматриваться как один из факторов риска развития сердечнососудистой патологии [311, 840].

У 950 больных с сахарным диабетом 2 типа при адекватном контроле АД и нормальной функции почек, которые наблюдались в исследовании AppropriateBloodPressureControlinDiabetestrial уровень фосфатов в сыворотке >3,9 мг/дл, но не кальция, был ассоциирован с повышенной сердечнососудистой смертностью [224]. У 15732 пациентов, наблюдавшихся в течение 12,6 лет, уровень фосфатов в сыворотке после коррекции по СКФ был ассоциирован с коронарными событиями, инсультом и сердечнососудистой смертностью [338, 387]. Уровень фосфатов в сыворотке был связан с большей массой миокарда левого желудочка и повышением риска развития СН в большом исследовании лиц без предшествующего ИМ и ХБП [276].

Причем у больных с СД 2 типа при высоком нормальном уровне фосфатов тоже было показано повышение сердечно-сосудистой смертности в 4 раза [224]. В исследовании факторов, связанных с развитием атеросклеротической бляшки, повышение уровня фосфатов в сыворотке было ассоциировано с повышением риска стенозирования, подобного тому, что наблюдается при курении [311]. В связи с этим обсуждается вопрос, следует ли добавить фосфат в список показателей, у которых «нормальные» значения не равны оптимальным значениям?
В нашем исследовании выявлено значение фосфора сыворотки как прогностического фактора при ХСН. Исходя из полученных данных больным с ХСН, особенно при наличии указанных предикторов, необходимо проводить скрининг состояния кальций-фосфорного метаболизма и коррекцию выявленных нарушений. Данные о прогностическом значении изменений фосфорного обмена могут открыть новые направления исследований при ХСН, имеющие целью повышение выживаемости этих пациентов.

Выявлено частое развитие вторичного гиперпаратиреоза у 60,5% пациентов. Причем при ХСН вторичный гиперпаратиреоз встречался чаще, чем при АГ. В качестве предикторов вторичного гиперпаратиреоза при ХСН выявлены длительный анамнез ХСН, снижение систолической функции ЛЖ, снижение СКФ, альбуминурия и снижение уровня витамина D.

Взаимосвязь поражения сердца и гиперпаратиреоза можно объяснить тем, что гиперпаратиреоз за счет разобщения окислительного фосфолирирования, приводит к уменьшению клеточной концентрации АТФ и снижению выхода кальция из клетки, что может приводить к миокардиальной дисфункции. Кроме того, на модели животных было показано, что повышенный уровень паратиреоидного гормона связан с интрамиокардиальным фиброзом [617].

Развитию вторичного гиперпаратиреоза при ХСН может способствовать гиперальдостеронизм, поскольку при этом, как показано в экспериментах на животных, значительно повышаются потери Ca^{2+} и Mg^{2+} с мочой и фекалиями. Это приводит к снижению их концентрации в сыворотке крови, что стимулирует секрецию паратгормона. С одной стороны, вторичный гиперпаратиреоз, способствует поддержанию внеклеточной концентрации Ca^{2+} и Mg^{2+} путем повышения абсорбции этих веществ в кишечнике и почках, а также костной резорбции [873]. С другой стороны, он приводит к снижению МПК и низкоэнергетическим переломам [122].
Несмотря на снижение внеклеточного уровня Ca\(^{2+}\), повышение уровня ПТГ в крови способствует увеличению внутриклеточного Ca\(^{2+}\) в таких тканях, как сердце, скелетные мышцы, а также в лимфоцитах и моноцитах крови (это так называемый кальциевый парадокс), что индуцирует развитие оксидативного стресса [122, 873, 955]. Это сопровождается (1) активацией NADP-оксидазы, источника супероксид-аниона в сосудистой ткани, (2) активацией транскрипционного фактора (NF)-κB, совместно с экспрессией провоспалительных генов, (3) появлением активных форм кислорода (например, супероксида H\(_2\)O\(_2\)) и азота (например, пероксинитрита) в различных тканях, и (4) снижением активности α\(_1\)-антипротеиназы в плазме.

Повышение ПТГ в сыворотке крови, наряду со снижением ионизованного [Ca\(^{2+}\)] и [Mg\(^{2+}\)], было обнаружено у пациентов, госпитализированных с декомпенсацией ХСН, длившейся более 4 недель, несмотря на лечение препаратами, блокирующими РААС, и у многих, но не у всех пациентов, обратившихся в более ранние сроки (через 1-2 недели). Уровень ПТГ не был увеличен у пациентов с компенсированной, леченной ХСН и у пациентов без этого заболевания [122].

Применение диуретиков у больных с ХСН приводит к повышению риска развития вторичного гиперпаратиреоза. Это объясняется тем, что применение фуросемида при ХСН увеличивает потерю Ca\(^{2+}\) и Mg\(^{2+}\) с мочой. Вторичный гиперпаратиреоз с гиперкальциурией был отмечен у пациентов с прогрессирующей ХСН, ожидающих пересадку сердца, и получающих длительное лечение фуросемидом. У этих больных также было установлено снижение минеральной плотности костей, соответствующее остеопении или, в более прогрессирующих случаях, остеопорозу [122]. Недавно, Schierbeck и соавт. показали независимую взаимосвязь между ПТГ и общей и сердечнососудистой смертностью у больных со стабильной ХСН [805].

Выявлено снижение уровня 25-ОН-витамина D<47,7 нмоль/л у 52,9% ХСН. Причем при ХСН вторичный гиперпаратиреоз встречался чаще, чем
при АГ. В качестве предикторов снижения уровня витамина D выявлены более выраженная клиническая симптоматика ХСН и худшая переносимость физических нагрузок.

В большинстве случаев, пациенты с ХСН имеют сниженную толерантность к физическим нагрузкам и поэтому ведут домашний образ жизни, который, предрасполагает их к появлению гиповитаминоза D. Снижение в сыворотке крови 25-гидроксивитамина D было зарегистрировано у госпитализированных пациентов с ХСН, ожидавших трансплантацию сердца. Гиповитаминоз D был также диагностирован у ряда негоспитализированных пациентов с ХСН европеоидной расы. У афроамериканцев гиповитаминоз D широко распространен, что связано с высоким содержанием меланина в коже, который является естественным солнцезащитным веществом, поэтому при высоком его содержании требуется более длительное воздействие солнечного света на кожу для выработки витамина D. Также меланин поглощает тепло, и, следовательно, может способствовать тому, что пациенты избегают воздействия солнечных лучей в теплые летние месяцы [122].

Снижение 25-гидроксивитамина D приводит к нарушению Ca^{2+}-гомеостаза. Это может быть обусловлено не только сокращенным воздействием солнечных лучей, но также с неспособностью стареющей кожи к адекватной выработке витамина D, ожирением, поскольку адипоциты секвестрируют витаминD, и снижением потребления Ca^{2+} с пищей [439]. Таким образом, афроамериканцы с гиповитаминозом витамина D и ХСН со вторичным альдостеронизмом, леченные фуросемидом, могут быть предрасположены к вторичному гиперпаратиреозу [122].

В исследовании Schleithoff и др. мужчинам с ХСН (средний возраст 55 лет) рандомизированно в течение 9 месяцев назначали либо плацебо, либо витамин D (50 мкг/сут; 2000 МЕ/сут). Несмотря на то, что авторы не обнаружили влияния витамина D на функцию левого желудочка и выживаемость при наблюдении в течение 15 месяцев, при лечении витамином
Диснизилась концентрация ФНО-α в сыворотке. В отличие от этого, концентрация интерлейкина-10, противовоспалительного цитокина, увеличивалась. Это подтвердило, что добавление витамина D благоприятно влияет на иммунномодулирующие цитокины, и, возможно, имеет кардиопротективный эффект. Кроме того, высокие дозы витамина D имеют большее влияние на регулирующие молекулы иммунной системы [806], поскольку в исследовании Witte и Clark при назначении витамина D в дозе 10 мкг/сут (400 МЕ/сут) влияния его на концентрацию цитокинов не отмечалось [222], а в исследовании Mahon было показано умеренное влияние витамина D в дозе 25 мкг/сут (1000МЕ/сут).

В связи с тем, что почки являются основным органом для экскреции фосфатов и 1α-гидроксилирования витамина D, у пациентов с ХБП развивается гиперфосфатемия вследствие снижения почечной экскреции фосфатов в результате неадекватного уровня 1,25-дигидроксивитамина D, ассоциированного с паренхиматозной недостаточностью. Оба этих процесса могут приводить к снижению уровня кальция в сыворотке крови и повышению секреции паратиреоидного гормона (вторичному гиперпаратиреозу). Паратиреоидный гормон обладает фосфатурическим эффектом, повышает уровень кальция за счет увеличения костной резорбции и способствует 1α-гидроксилированию 25-гидроксивитамина D, синтезируемому в печени [897].

У пациентов с ХПН различают четыре типа костного фенотипа (почечной остеодистрофии): остеит fibrosacystica (высокий обмен в костной ткани с вторичным гиперпаратиреозом), остеомаляция (низкий обмен в костной ткани и неадекватная минерализация, в первую очередь связанная с уменьшением синтеза витамина D), адинационная костная дезорганизация (низкий костный обмен, связанный с чрезмерным подавлением паратиреоидных желез), и смешанная остеодистрофия (с элементами как высокого так и низкого обмена в костной ткани) [488].
Золотым стандартом диагностики варианта костных нарушений при ХБП остается биопсия трабекулярной костной ткани из передне-верхней ости подвздошной кости. Выполнение биопсии может быть обосновано при необъяснимых переломах, болевом синдроме, гиперкальцийемии, гиперфосфатемии на фоне активной терапии ФСП при нормальных значениях интактного ПТГ и ЩФ, при подозрении на алюминиевую интоксикацию и перед началом терапии бифосфонатами. На практике эта манипуляция выполняется редко ввиду ее болезненности, а также технической сложности приготовления срезов недеминерализованной костной ткани [21].

В целом, количество пациентов в исследованиях с гистоморфонометрией относительно невелико, особенно с прослеженной естественной динамикой процессов (в обзоре рекомендаций KDIGO 2009 года – 230 человек). Представление четких выводов по результатам этих исследований затруднено различиями в подходах к классификации, а также разницей в географическом положении, генетических факторах и видах диализа. Кроме того, отсутствует согласованное мнение о нормальном диапазоне скорости минерализации, поскольку она не может быть получена на аутопсийном или хирургическом материале, а требует проведения тетрациклинового теста [21]. На основе результатов гистоморфонометрии недекальцинированных срезов трабекулярной кости выделяют следующие характеристики костного обмена [21].

1. Скорость костного обмена (Turnover), рассчитываемая по расстоянию, который проходит фронт минерализации остеоида за известный интервал времени (около 2 недель) между получением пациентом метки (тетрациклина), которая включается во фронт минерализации и визуализируется при флюоресцентной микроскопии. Другие свидетельства высокой или низкой скорости костного обмена (доля костной поверхности с реоборбцией, число остеокластов, площадь фиброза или оценка «беспорядочной» (woven) кости) демонстрируют связь со скоростью движения фронта минерализации, поэтому последняя, как наиболее определенная и динами-
ческая мера, предложена для количественного представления скорости обмена кости [21].

2. Минерализация, которая отражает количество неминерализованного остеоида по его ширине по периферии среза костной балки, может быть выражена временем созревания остеоида или временем задержки минерализации [21].

3. Объем костной ткани. Этот параметр традиционно включается в схемы классификации остеодистрофий, поскольку отражает результирующую активность процессов остеогенеза и резорбции. Снижение объема костной ткани (доли площади трабекул в общей площади среза) без изменения структуры трабекул более характерно для идиопатического остеопороза. Уменьшение или увеличение объема кости с нормальной структурой отражается при рентгенологическом определении минеральной насыщенности костной ткани (ДРА). Но при ХБП структура кости существенно искажена, поэтому величина объема кости, равно как и МПК, сложна в интерпретации. Более того, соотношение изменений в кортикальной и трабекулярной кости существенно иное, чем при остеопорозе, а именно: при выраженном гиперпаратиреозе объем кортикальной кости может быть снижен, а трабекулярной кости – повышен [21].

Мы не проводили биопсию костей при ХСН. Однако, по результатам денситометрии было выявлено значимое снижение МПК у больных с ХСН с развитием у многих пациентов остеопении и остеопороза.

При наличии остеопороза, как в поздних стадиях хронической болезни почек, так и в общей популяции, может быть эффективной терапия бифосфонатами [21]. Из этих препаратов отсутствуют указания о кардиотоксичности у алендроната, в связи с чем этот препарат рекомендовался нашим пациентам с ХСН при наличии остеопороза. При ХБП определение МПК в динамике (один раз в год), особенно у пациентов со снижением этого показателя, представляется весьма важным в отношении коррекции...
проводимой терапии и оценки риска развития переломов костей[21]. Логично распространить это и на больных с ХСН.

У больных с ХБП разработаны и регулярно обновляются рекомендации по КМН при ХБП, согласно которым целью лечения нарушений минерального и костного обмена является снижение уровня фосфора в крови. Первоначальная терапия ограничивается диетическим потреблением фосфора. Сывороточный уровень фосфора должен быть от у больных с 3 и 4 ст ХБП, и от 3,5 до 5,5 мг/дл у лиц с 5 ст ХБП. При незэффективности медикаментозной терапии рекомендуются фосфатсвязывающие препараты. Наиболее широко используемым при ХБП классом ФСП являются препараты, содержащие кальций. Но они могут индуцировать гиперкальциемию, и увеличение отложения кальция в сосудистой стенке. У пациентов с ХПН и гиперкальциемией, возможно краткосрочное использование препаратов связывающих фосфор на основе алюминия, как альтернатива кальцийсодержащимпрепаратам [897].

Учитывая снижение 1α-гидроксилирования витамина D при почечной недостаточности, витамин D и его соединения могут быть необходимы для повышения концентрации кальция в сыворотке достаточной для подавления секреции паратгормона. Также могут быть использованы кальцимиметики - агенты, которые повышают чувствительность кальцийевых рецепторов паращитовидных желез, подавляют секрецию паратгормона и сокращают гиперплазию паращитовидных желез [897].

У больных с ХСН применение ФСП и кальцимиметиков не изучено. По аналогии с ХБП можно рекомендовать им при выявлении МКН – ограничение употребления фосфатов с пищей, снижение уровня фосфатов до 2,7 – 4,6 мг/дл, при отсутствии гиперкальциемии и особенно при гипокальциемии – препараты кальция, возможно в комплексе с препаратами витамина D3, особенно при выявлении его дефицита или недостаточности.

Также данные наблюдательных исследований выявили связь FGF23 с распространённостью атеросклероза, сердечно-сосудистыми событиями
и эндотелиальной дисфункцией у больных с [823, 972] и без патологии почек [493, 643, 710]. Действительно, в наблюдательных исследованиях, в которых измеряли и уровень фосфатов, и FGF23, взаимосвязь со смертностью и сердечно-сосудистыми событиями была сильнее у FGF23, чем у фосфатов сыворотки. Например, в исследовании HeartandSoulStudy риск смерти и сердечнососудистых событий у лиц с высокими (самый высокий тertiль) значениями FGF23 сыворотки был в 2 раза выше, даже после коррекции по функции почек и другим факторам риска [710]. В большой когорте больных с ранними стадиями ХБП предсказательное значение FGF23 в отношении смертности (в 3 раза смертность была выше у больных с верхним тертилем значений FGF23) не ослабевало после коррекции по уровню фосфора и кальцитриола в сыворотке [311, 469]. Причем более высокий уровень FGF23 был ассоциирован с ожирением, дислипидемией (меньшим холестерином ЛПВП, аполипопротеидом А1, более высокими триглицеридами) и риском наличия метаболического синдрома [642].

FGF23 действует через его облигатные трансмембранные корецепторы α-Klotho. У животных с отсутствием FGF23 и α-Klotho имеется гиперфосфатемия, признаки преждевременного старения и атеросклероза с кальцификацией медин, которые могут быть частично опосредованы нарушениями обмена фосфатов и витамина D. Растворимые формы α-Klotho, наоборот, оказывали благоприятное воздействие на состояние эндотелия [311, 466]. Для определения эффекта воздействия FGF23/α-Klotho на фосфатную ось и CCC необходимы дополнительные исследования [311].

Недавно было показано прогностическое значение FGF23 в небольшой группе пациентов со стабильной ХСН [316, 732]. К сожалению, в нашей работе не было возможности изучить FGF23/α-Klotho.

При ХБП в нескольких крупных проспективных исследованиях была продемонстрирована различная связь уровня ПТГ и переломов. При этом и высокие, и низкие значения ПТГ ассоциировались с повышенной частотой
переломов. Возможно, что J-образный характер зависимости в некоторых исследованиях мешал выявить четкую связь между этими параметрами. В одном из исследований в сопоставимых группах больных паратиреоидэктомия приводила к снижению на треть частоты переломов [21].

Классической гистологической картиной, характерной для высокой активности паращитовидных желез, являются признаки высокой скорости обмена с перитрабекулярным фиброзом, наличие активных остеокластов и повышение числа многоядерных остеокластов, так называемая «беспорядочная кость», размытые тетрациклиновые метки, увеличенный объем трабекулярной кости и сниженной объем кортикальной. Однако важно отметить, что ответ кости на действие ПТГ (его уровень) непостоянен, поскольку для ХБП характерна резистентность кости к этому гормону, имеющая целый ряд не вполне определенных причин. При этом в исследованиях, анализировавших связь уровня ПТГ и МПК, констатировалось или отсутствие такой связи, или ее обратный характер [21].

Корреляция ПТГ и скорости обмена, как и в любом диагностическом тесте, зависит от принятого порогового значения. В большинстве исследований последних лет такая связь более четко прослеживалась при концентрации ПТГ выше 250–300 пм/мл (примерно в 90% случаев). Предсказательная ценность низких значений ПТГ (<150 пг/мл) в отношении выявления низкообменной остеодистрофии была хуже (50–90% наблюдений), а диапазон значений ПТГ 150–300 пг/мл ассоциировался с существенной неопределимостью в предсказании гистологической картины кости. При этом в некоторых исследованиях уровень общей щелочной фосфатазы лучше коррелировал со скоростью обмена кости, чем концентрация ПТГ, однако диагностических пороговых значений для ЩФ не установлено [21].

В нашем исследовании у большинства больных с ХСН выявлены факторы риска остеопороза и переломов, а также падений. Показано частое поражение костной системы при ХСН в виде снижения минеральной плотности кости (МПК по результатам ДРА), развития остеопороза у
35,1(95%ДИ 19,0-51,3)% и остеопении – у 59,5%(95%ДИ 36,6-82,3)%. Причем изолированное поражение проксимальных отделов бедренной ко-
сти при ХСН было выявлено в 3 раза чаще, чем изолированное поражение поясничного отдела позвоночника, а сочетанного поражения и прокси-
мальных отделов бедренной кости, и поясничного отдела позвоночника выявлено не было. Предикторами снижения МПК являлись переносимость физических нагрузок, снижение СКФ, альбуминурия, гипокальциемия,
вторичный гиперпаратиреоз и снижение витамина D.

С учетом и клинических данных, и на основании денситометрии рас-
пространенность остеопороза была еще выше и составила 52% (95% ДИ 37,7; 66,3%) больных с ХСН. Предикторами остеопороза являлись али-
тельность АГ в анамнезе и снижение СКФ.В Российской популяции среди лиц в возрасте 50 лет и старше ОП выявляется у 34% женщин и 27% муж-
чин. Аналогичные показатели распространенности остеопороза у женщин отмечены среди белого населения Северной Америки и ряда стран Запад-
ной Европы [36].Это означает, что что среди ХСН остеопороз выявляется чаще, чем в популяции.

NishioK. и соавт. показали значеиние генетического фактора в разви-
тии остеопороза у больных с ХСН в исследовании, в котором повышенное снижение МПК наблюдалось у больных с FF генотипом рецепторов к ви-
тамину D[351]. Среди обследованных нами больных с ХСН у носителей генотипа СС полиморфного маркера C825T гена GNB3 выявлен меньший риск остеопороза по сравнению с носителями генотипов CT и TT.

Выявлена тенденция к повышению 10-летнего риска развития пере-
ломов любой локализации, оцененной с помощью модели FRAX, у боль-
ных с гиперфосфатемией и достоверно более высокий риск развития пере-
ломов шейки бедра у больных с повышенным уровнем интактного парат-
гормона в сыворотке выше медианы. Это позволяет предположить о нали-
чии возможности снижения риска развития переломов и улучшения про-
гноза при ХСН посредством коррекции уровня фосфатов и паратиреоидного гормона в сыворотке крови.

Изучены маркеры костеообразования (интактный остеокальцин) и костной резорбции (С-концевой телопептид коллагена I типа, остеопротегерин). Выявлено, что уровень остеокальцина связан с выраженной четвертной гиперпаратиреозом и поражением костной системы. Уровень С-концевого телопептида коллагена I типа коррелировал с выраженностью дисфункции почек и нарушений кальций-фосфорного гомеостаза. Уровень остеопротегерина коррелировал с ПТГ, кальцитонином, МПК. Наши данные согласуются с результатами Chen и соавт., которые показали негативную корреляцию между концентрацией остеопротегерина в сыворотке и МПК в области большого вертела у больных с СН, на основании чего ученые предлагают использовать остеопротегерин как предиктор МПК и альтернативу ДРА у больных с СН[220].

Полученные результаты позволяют рассматривать больных с ХСН как группу повышенного риска возникновения минерально-костных нарушений, остеопороза и связанных с ним переломов. Изучение механизмов формирования нарушений кальций-фосфорного гомеостаза, гиповитаминоза витамина D и вторичного гиперпаратиреоза и разработка профилактических и лечебных мероприятий могут способствовать замедлению прогрессирования ХСН, повышению продолжительности жизни, а, возможно, и качества жизни этих больных. Разработка и проведение новых экспериментальных и клинических исследований по изучению взаимосвязи ХСН и МКН и остеопороза поможет оптимизировать ведение этих больных.

Печень как орган-мишень при ХСН

Кардиогепатические взаимоотношения целесообразно рассматривать с двух позиций. С одной стороны, в печени развиваются изменения, обусловленные первичным поражением миокарда и связанные с расстройствами центральной гемодинамики, гипоксией и гуморальными сдвигами.
С другой стороны, поражение печени может явиться важным фактором возникновения или усугубления уже имеющихся сердечно-сосудистых нарушений и оказывать влияние на прогноз [27].

В нашем исследовании гепатомегалия была выявлена у 56,7% и была выявлена тенденция к меньшей выживаемости пациентов с гепатомегалией по сравнению с остальными. Повышение уровня ЛДГ отмечалось у 53,7%, АСТ – у 32,0%, АЛТ– у 37,3%, ГГТП - у 81,3%, ЩФ - у 5,2%, билирубина-общего – у 50,0%, прямого – у 52,9%, снижение альбумина выявлено у 7,8%, общего белка – у 15,3% больных с ХСНнФВ. Признаки коагулопатии без антикоагулянтной терапии выявлены у 51,9-61,1% больных.

В исследовании EVEREST снижение альбумина и повышение ЩФ выявлялось у 17% и 23% пациентов соответственно, т.е. чаще, чем у обследованных нами больных [124]. Повышение АСТ в исследовании EVEREST отмечено у 21%, АЛТ - у 21%, ГГТП - у 62%, общего билирубина - у 26% - реже, чем у наших больных. В исследования ESCAPE повышение АСТ и общего билирубина выявлялось реже, чем у наших больных: у 23,5% и 36,1%, снижение альбумина – чаще: у 23,8% [809]. В исследовании релаксина АНФ повышение АЛТ было у 12%, АСТ - 21%, ЩФ – у 12%, общего билирубина – у 19% исчезла альбумина у 25% общего билирубина у 9% [916]. В исследовании ASCEND-HF повышение билирубина выявлено у 42%, АЛТ – у 22%, АСТ – у 30% [796]. Некоторые различия в частоте встречаемости различных отклонений от нормы показателей функционального состояния печени можно объяснить различиями в исходных характеристиках включенных пациентов.

В нашем исследовании концентрация ЛДГ и общего белка в сыворотке крови были взаимосвязаны с наличием гепатомегалии. Как ни странно, корреляция вышеуказанных маркеров поражения печени со злоупотреблением алкоголем и ИМТ выявлена не было (р>0,05). При этом отмечалась взаимосвязь ЩФ, билирубина, ЛДГ, АСТ и АЛТ выраженностю
клинической симптоматики ХСН, снижением систолической функции сердца и фильтрационной функции почек. Следовательно, в качестве предикторов поражения печени как органа-мишени при ХСН можно рассматривать тяжесть СН, систолическую дисфункцию миокарда ЛЖ и снижение функции почек.

В исследованиях ESCAPE повышение общего билирубина было связано со значительно более низкими значениями СИ и более высоким ЦВД [809]. В исследовании ASCEND-HF пациенты с нарушением функционального состояния печени были лимитацией ФВЛЖ [796].

У обследованных нами больных с ХСН и ФВ при переходе декомпенсированных пациентов в состояние компенсации не отмечалось достоверного изменения альбумина, ЛДГ, АСТ, АЛТ, ЩФ, ГГТП, общего и прямого билирубина. При этом отмечалось повышение общего белка после достижения состояния компенсации. В исследовании релаксина АНФ также изменения показателей печени в течение пребывания в стационаре были очень незначительными [916].

Таким образом, самыми частыми проявлениями (выявляются у ≥50% больных) нарушения функционального состояния печени у пациентов с ХСН являются повышение ГГТП, ЛДГ и билирубина, несколько менее частыми (выявляются у ≥30% пациентов) – повышение АСТ и АЛТ и нечастыми (выявляются у 5-15% пациентов) – повышение ЩФ, снижение альбумина и общего белка. Факторами риска поражения печени как органа-мишени при ХСН можно считать тяжесть СН, систолическую дисфункцию миокарда ЛЖ и снижение функционального состояния почек. Повышение значений индекса MELD-XI ≥11 ассоциировано с неблагоприятным прогнозом у больных с ХСН.

Бронхолегочный аппарат как орган-мишень при ХСН

Проведено комплексное обследование структурно-функционального
состояния бронхолегочного аппарата с помощью спирографии, пневмотахографии, исследования сопротивления дыхательных путей, диффузионной способности. Показано, что поражение бронхолегочного аппарата имеется у 56% пациентов с ХСН, причем у большинства больных тип нарушений вентиляции был ректриктивным. Нарушения вентиляции были связаны с выраженностью клинической симптоматики, переносимостью физических нагрузок, активацией системы воспаления, снижением сердечного выброса и почечного кровотока.

По данным литературы, нарушения диффузии встречались у 41 и 93%, рестрикция – у 21 и 55%, обструкция – у 14 и 60% [195, 304, 318, 320, 670, 676, 691, 960]. Такие отличия обусловлены малым количеством исследованных больных, различиями обследованных популяций, а также диагностическими критериями, использованными при анализе [640]. Все исследования, кроме одного, использовали % от должного [508]. В этом исследовании выявлено нарушение диффузии у 44-58% и обструкция дыхательных путей у 26-37% больных с ХСН с ФВ ЛЖ< 40% I-II ФК NYHA при использовании LLN и % от должного соответственно, р<0,05. Рестриктивные нарушения были редко: 7% и 5% соответственно, р>0,05. Т.е. у 27% должные пороговые значения приводили к гипердиагностики нарушений ФВД [640]. Описанный паттерн нарушения вентиляции в этом исследовании, во-видимому, обусловлен включением значительного количества больных с первичным поражением бронхолегочного аппарата, в т.ч. ХОБЛ.

В нашем исследовании рестриктивный тип нарушения вентиляции были выявлен у 50,9-39%, смешанный тип – у 3,4-15,3% при использовании LLN и % от должного соответственно. Поскольку LLN продемонстрировал наибольшую согласованность с клинико-анамnestическими данными, на наш взгляд, целесообразно в практической работе для оценки спирометрии использовать LLN наряду с системой должных значений % от должного.
В нашем исследовании легочная гипертензия была выявлена у 79,1% больных с ХСНнФВ и 50% больных с ХСНсФВ. Это несколько отличается от данных Husain-SyedFiscoавт., где легочная гипертензия встречалась у 60% с ХСН с низкой ФВ ЛЖ и у 80% с сохраненной ФВ ЛЖ [461].

Таким образом, частым проявлением поражения бронхолегочного аппарата у пациентов с ХСН является рестриктивный тип вентиляционных нарушений. Факторами риска поражения поражения бронхолегочного аппарата как органа-мишени при ХСН можно считать тяжесть СН, низкую переносимость физических нагрузок, активацию системы воспаления, снижение сердечного выброса и снижение почечного кровотока. Неблагоприятное прогностическое значение низкой общей емкости легких и снижения альвеолярного объема у больных с ХСН позволяет предположить, что дальнейшие направления улучшения прогноза при ХСН могут быть связаны с профилактикой и лечением поражения бронхолегочного аппарата.

Механизмы поражения органов-мишений

Гемодинамические предикторы и механизмы

В нашем исследовании показано, что гипотензия может являться фактором риска развития вторичного гиперпаратиреоза при ХСН, что может способствовать развитию и других нарушений костно-минерального обмена, и фактором риска развития ответа острой фазы, учитывая повышение такого маркера, как фибриноген. Это следует учитывать при попытке достижения рекомендованных доз лекарственных препаратов, способствующих снижению АД.

Мощные диуретики, вазодилататоры и/или ультрафильтрация часто приводят к снижению внутрисосудистого наполнения с артериальной гипотонией. Показана корреляция таких гипотензивных эпизодов с эпизодами ухудшения функции почек при декомпенсации ХСН [299, 895]. В настоящее время нет проспективных рандомизированных исследований, в
которых было бы показано оптимальное целевое АД у больных с декомпенсацией СН и КРС. Однако, целесообразно избегать снижения среднего АД<65 мм рт.ст., особенно в течение длительного времени, поскольку это критический уровень, ниже которого нарушается нормальная почечная регуляция и снижается перфузия почек [182, 848].

Метаболические предикторы и механизмы

В нашем исследовании выявлена взаимосвязь гиперурикемии и сахарного диабета с признаками дисфункции почек и костно-минеральными нарушениями при ХСН, что может свидетельствовать о дополнительном вкладе нарушений пуринового и углеводного обмена в генез поражения органов-мишеней при этом заболевании.

Множество потенциальных патофизиологических механизмов, может лежать в основе взаимосвязи между диабетом, глюкозой, инсулинорезистентностью и СН. Сердце, которое требует громадного количества энергии для ежедневной работы (5 кг АТФ/сут) в условиях инсулинорезистентности может менее рационально использовать энергию со снижением утилизации глюкозы и увеличением утилизации свободных жиров. Это метаболическая дисрегуляция может увеличить восприимчивость к повреждениям, таким как перегрузка давлением или ишемия и тем самым стимулировать активацию РААС. Кроме того, имеются экспериментальные данные о связи гипергликемии и гиперинсулинемии с активацией симпатической нервной системы. Активация нейрогуморальных систем и оксидативный стресс, обусловленный гипергликемией и гиперинсулинемией, последующее воспаление могут способствовать поражению органов-мишеней [443].

У больных с ХСН гипоксия и гибель клеток приводят к повышению количества субстрата для ксантиноксидазы, повышению активности этого фермента и увеличению продукции мочевой кислоты [287]. Продукция мочевой кислоты сопровождается образованием активных радикалов кислорода (АРК). Они взаимодействуют с эндотелиальным NO с образовани-
ем пероксинитрита, который также является АРК. Деградация NO способствует развитию дисфункции эндотелия и снижению ее способности к вазодилатации, что приводит к усилению гипоксии и, следовательно, еще большему увеличению продукции мочевой кислоты. В то же время АРК запускают продукцию провоспалительных цитокинов, которые усугубляют выраженность дисфункции эндотелия и еще больше увеличивают активность ксантинооксидазы, замыкая порочный круг. Исходя из тесной взаимосвязи гиперурикемии и провоспалительных цитокинов, мочевую кислоту у больных с ХСН в последние годы стали рассматривать как маркер хронического воспаления[287, 555].

Кроме того, гиперурикемия у больных с ХСН может быть связана с диуретической терапией: повышением реабсорбции мочевой кислоты в проксимальном канальце в условиях гиповолемии, которого можно избежать, используя меньшие дозы диуретика и не допуская развития гиповолемии. Также увеличение концентрации мочевой кислоты может быть связано со снижением ее экскреции вследствие нарушения работы почек [288].

Имеются данные, что уровень мочевой кислоты повышается параллельно с увеличением функционального класса ХСН, отражает выраженность систолической дисфункции миокарда ЛЖ [288, 692]. Выявлена взаимосвязь гиперурикемии со снижением периферического кровотока и способности к вазодилатации [288]. Показана обратная взаимосвязь между уровнем мочевой кислоты и резервом коронарного кровотока [400]. Выявлено, что гиперурикемия является независимым предиктором смертности при ХСН, более сильным, чем клинический статус, переносимость нагрузок, параметры функции почек и диуретическая терапия[119, 132]. Относительный риск смерти при увеличении уровня мочевой кислоты в 2 раза повышался в 18 раз. Долгосрочный прием ингибитора ксантинооксидазы аллопуринола в дозе ≥300 мг/сут приводил к снижению смертности [287, 378, 689, 880]
В нашем исследовании было выявлено, что концентрация С-реактивного белка была достоверно выше у пациентов с поражением почек, гиперфосфатемией, поражением легких, что позволяет рассматривать воспаление как фактор риска поражения органов-мишеней при ХСН.

Генетические предикторы и механизмы

У обследованных больных проведен анализ полиморфных маркеров Pro72Arg гена TP53, полиморфного маркера C825T гена GNB3 и полиморфных маркеров генов, кодирующих бета2-адренорецептор (ADRB2) для выявления генетических факторов риска поражения органов-мишеней при ХСН.

Полиморфные варианты ДНК (SNP, однонуклеотидные полиморфизмы, полиморфные маркеры) отличаются от редких вариантов (мутаций), тем, что даже наименее распространенный аллель встречается с частотой 1% и более. Однонуклеотидные полиморфизмы могут находиться в любых участках внутри, вблизи или вне генов, изменять регуляторные участки генов, быть сцепленными с другими функционально значимыми полиморфизмами, приводить или не приводить к изменению последовательности аминокислот, определять количество соответствующего белка, повышать предрасположенность к определенным состояниям или заболеваниям, или никак себя не проявлять. Для определения молекулярно-генетических факторов, которые в свою очередь будут определять вклад в то, или иное мультифакториальное заболевание, анализируют SNP, расположенные внутри или вблизи генов, вносящих наибольший вклад в патогенез заболевания. Самым доступным и распространенным методом по обнаружению информативных полиморфных локусов является анализ ассоциаций полиморфизма генов-кандидатов с различными дискретными и количественными признаками (наличием заболевания, конечных точек, клиническими, лабораторными данными, результатами инструментального обследования и др.). Поиск полиморфных маркеров генов–кандидатов и их использование в изучении генетической предрасположенности к сердечно-
сосудистым заболеваниям основан на знании молекулярных механизмов патогенеза этих заболеваний и предположении, что полиморфизм данного гена может повлиять на уровень метаболических процессов [69].

СН относится к полигенным и многофакторным заболеваниям. Во-первых, это означает, что генетическая предрасположенность в случае таких заболеваний определяется не одним геном, а совокупным вкладом нескольких, а обычно нескольких десятков, генов. Причем в разных популяциях вклад этих генов в развитие одного и того же заболевания может существенно различаться. Также существенно различаются и факторы внешней среды. Все это приводит к тому, что уровни ассоциации одних и тех маркеров в разных популяциях значительно различаются [47].

Во-вторых, конкретный ген действительно может определять генетическую предрасположенность к заболеванию в ряде изученных популяций, однако полиморфные маркеры, использованные в опубликованных работах, не относятся к функционально важным и только находятся в неравновесии по сцеплению с функционально важными полиморфизмами этого гена. Уровни неравновесия по сцеплению одного и того маркера в разных популяциях также могут значительно различаться [47].

В-третьих, к функционально важным полиморфизмам могут относиться несколько полиморфизмов конкретного гена. В таком случае в формирование генетической предрасположенности к заболеванию существенный вклад будут вносить не аллели отдельных маркеров, а гаплотипы, в состав которых входят определенные аллели нескольких маркеров [47].

И, наконец, в-четвертых, – это наличие другого гена, расположенного рядом и определяющего предрасположенность к заболеванию [47].

Интерес к полиморфным маркерам генов, кодирующих адренорецепторы, при ХСН обусловлен значительным снижением смертности при этом заболевании при назначении блокаторов этих рецепторов и тем, что сте-
пень благоприятного влияния этих препаратов на прогноз отличается у разных больных.

В нашем исследовании при ХСН у носителей генотипа Gln/Gln полиморфного маркера Gln27Glu гена ADRB2 выявлена большая выраженность клинической симптоматики ХСН, у носителей генотипа Glu/Glu – более выраженная тенденция к брадикардии и большая длительность АГ до развития ХСН.

Sehrt и соавт. показали, что у носителей аллеля Gln27 гена ADRB2 выраженное снижается АД в покое после назначения карвелилола, чем у носителей аллеля Glu27[820].

Khazova и соавт. в течение года наблюдения показали, что полиморфный маркер Gln27Glu гена ADRB2 связан с частотой развития инфарктов миокарда и инсультов у больных с СН [511].

Petersen и соавт. показали, что у носителей аллеля Gln27 гена ADRB2 при лечении карведилолом смертность была в 2 раза выше, чем при других генотипах [717]. Это, возможно, обусловлено большей тяжестью СН у носителей генотипа Gln/Gln.

Mansur и соавт. при наблюдении в течение года не выявили достоверной взаимосвязи полиморфного маркера Gln27Glu гена ADRB2 с прогнозом, но отмечали тенденцию к влиянию у пожилых [602]. В нашем исследовании взаимосвязи полиморфных маркеров изученных генов с выживаемостью не было.

Ген GNB3 кодирует субъединицу β3 G белка, который участвует в передаче внутрь клеток сигналов, контролирующих тонус сосудов и пролиферацию многих типов клеток. В нашем исследовании у носителей генотипа CC полиморфного маркера C825T гена GNB3 выявлен больший риск снижения систолической функции левого желудочка, замедления проводимости, альбуминурии меньший риск остеопороза по сравнению с носителями генотипов СТ и ТТ. Таким образом, именно носительство генотипа CC полиморфного маркера C825T гена GNB3 может рассматривать-
сия в качестве генетического предиктора поражения сердца и альбуминурии при ХСН, а носительство аллеля $825T$ – как предиктор поражения костной системы. У больных с сахарным диабетом 2 типа аллель $825T$ был предиктором развития конечной стадии болезни почек [842]. У больных с СН комбинация аллель $825T$ гена $GNB3$ и аллеля $Arg389$ гена $ADRB1$ позволяла выявить пациентов с высоким риском необходимости в установке имплантируемого кардиовертера-дефибриллятора [214].

В нашем исследовании у носителей аллеля $72Arg$ гена $TP53$ был выше риск поражения печени с развитием холестатического синдрома и склонность к желудочной тахикардии. Было показано, что аллель $72Arg$ гена $TP53$ связан с риском развития сахарного диабета [381, 749] и ишемической болезни сердца [200]. Этот полиморфный маркер ранее у больных с ХСН не изучался.

Полученные данные можно использовать при оценке риска поражения органов-мишеней и оценки необходимости назначения превентивной органопротекции.

Влияние поражения органов-мишеней на выживаемость больных с ХСН

Основной задачей лечения больных с ХСН является улучшение прогноза, поэтому выявление факторов, определяющих прогноз у больных с ХСН – чрезвычайно важная задача [605]. В настоящее время известно большое количество клинических, гемодинамических, биохимических и электрофизиологических факторов, влияющих на прогноз у больных с ХСН [243].

В нашем исследовании неблагоприятное прогностическое влияние оказывали высокий (III-IV) ФК ХСН, низкая ФВ ЛЖ, выраженная легочная гипертензия, низкая переносимость физических нагрузок, гипонатриемия, потребность в высоких дозах диуретиков. Это согласуется с результатами проведенных ранее исследований, в которых тоже было показано независимое прогностическое значение фракции выброса ЛЖ, тяжести клинической симптоматики (например, функциональный класс (ФК) по классифи-
кации NYHA), концентрации натрия и нейрогормонов (норадrenalина, альдостерона, активность ренина и др.), в сыворотке крови [605, 812].

Длительное время значение функции почек как прогностического фактора у больных с ХСН недооценивалось или игнорировалось. Даже самые крупные исследования, такие как CONSENSUS, SOLVD или V-HeFT, исходно не рассматривали влияние на выживаемость параметров, отражающих функцию почек [605].

Среди наших пациентов умерло 67,8% за 10 лет наблюдения, что свидетельствует о тяжести наблюдаемого контингента больных. Продолжительность жизни пациентов с ХСНиФВ составила 26 (12 – 60) месяцев. Эти цифры согласуются с данными многочисленных исследований, посвященных изучению прогноза у больных с ХСН [162, 245, 588, 802, 826, 875].

Снижение СКФ<60 мл/мин/1,73м² было связано с большей смертностью обследованных больных, что согласуется с данными предшествующих исследований [155, 257, 429, 431, 433, 855]. Однако при создании регрессионной модели Кокса ФК NYHA имел большее прогностическое значение, чем СКФ. Отличие наших данных от данных Hillege и соавт., показавших, что СКФ является независимым предиктором смертности, даже более сильным, чем ФК NYHA и фракция выброса ЛЖ [429, 431, 433], по-видимому, обусловлено тем, что в наше исследование включались больные не только с III-IV ФК NYHA и с большим размахом значений фракции выброса ЛЖ.

У обследованных больных с ХСН при наличии альбуминурии уровня A2 и выше смертность была достоверно выше, чем при меньших значениях ЭАМ. Неблагоприятное прогностическое влияние повышения ЭАМ на смертность, вероятность сердечно-сосудистых событий и функцию почек было показано в общей популяции [138, 282], у больных с сахарным диабетом [268, 648], артериальной гипертензией [109, 937] и другими сердечно-сосудистыми заболеваниями [183, 366, 860]. У больных с ХСН прогно-
стическое значение повышения ЭАМ изучено мало [479]. Лишь в одной работе Jackson и соавт. показали, что повышение ЭАМ оказывает неблагоприятное прогностическое влияние на смертность, даже после поправки на СКФ, наличие сахарного диабета и уровень гликогемоглобина (HR 1,62 (95%ДИ 1,32-1,99) и HR 1,76 (95%ДИ 1,32-2,35) при наличии микро- и макроальбуминурии по сравнению с нормоальбуминурией соответственно) [479].

В нашей работе увеличение смертности было связано также с параметрами почечной гемодинамики: снижением общего и базального минутного объемного почечного кровотока и повышением RI, что подтверждает необходимость оценки этих показателей при ХСН. Аналогичных работ в литературе нам найти не удалось.

Впервые прогностическое значение концентрации креатинина в сыворотке крови у больных с ХСН было показано в середине 90-х годов 20 века [326, 575, 590, 702]. В 2000 году Hillege и соавт. с помощью многофакторного анализа доказали, что СКФ, рассчитанная по формуле Кокрофта-Голта у больных с ХСН III–IV ФК NYHA и фракцией выброса ЛЖ ниже 35%, включенных в исследование PRIME-III[408, 409, 429, 431], является независимым предиктором общей и сердечно-сосудистой смертности, даже более сильным, чем функциональный класс и фракция выброса ЛЖ [429, 431].

При СКФ<44 мл/мин (25-й процентиль) относительный риск смерти был почти в 3 раза выше, чем при СКФ>76 мл/мин (75-й процентиль) [431]. Dries и соавт., ретроспективно проанализировав данные исследований SOLVDTreatmentandPrevention, подтвердили, что расчетные значения СКФ являются важным фактором, определяющим выживаемость больных с ХСН [89, 295].

В мета-анализе Smith и соавт., в который было включено 80098 пациентов с ХСН, смертность в течение года среди больных без дисфункции почек составила 24%, при наличии сопутствующей дисфункции почек (по-
вышения уровня креатинина >1мг/дл, снижения клиренса креатинина или СКФ<90мл/мин или повышения цистатина С >1,03мг/дл) – 38%, при умеренной или тяжелой дисфункции почек (повышення уровня креатинина ≥1,5мг/дл, снижении клиренса креатинина или СКФ <53 мл/мин или повышении цистатина С≥1,56мг/дл) – 51% [855]. Это было подтверждено в работах отечественных исследователей [55, 63].

Учитывая тесную взаимосвязь прогноза при ХСН с нейрогуморальной активацией и слабую корреляцию последней с гемодинамическими параметрами, отражающими нарушение функции сердца, Marenzi и соавт. исследовали функцию почек (концентрацию креатинина в сыворотке крови) в качестве определяющей нейрогуморальной активации. Они показали, что уровень нейрогормонов в плазме является результатом независимой конвергенции и сердечной, и почечной дисфункции [605]. При одинаковой выраженности дисфункции почек концентрации норадреналина, альдостерона и активность ренина в плазме были значительно выше у больных с большим снижением функции сердца, а при одинаковой выраженности дисфункции сердца – у больных с нарушением функции почек [605]. Т.е. при схожих гемодинамических характеристиках отмечалась взаимосвязь нейрогуморальной активации и функции почек. С одной стороны, это может быть обусловлено тем, что степень нейрогуморальной активации определяет состояние функции почек и гиперактивация соответствующих систем приводит к тяжелой дисфункции почек. С другой стороны, повышение концентрации нейрогормонов в крови может быть обусловлено снижением их выведения почками [605].

Было выявлено, что не только исходный уровень креатинина в сыворотке, но и повышение его за время госпитализации по поводу ХСН связано с меньшей выживаемостью, большей продолжительностью и частотой госпитализаций [342, 533, 729]. Gottlieb и соавт. показали, что с неблагоприятными исходами связано увеличение концентрации креатинина даже на 0,1 мг/дл (8,8 мкмоль/л). Увеличение этого показателя на 0,3 мг/дл (26,5
мкмоль/л) позволяло прогнозировать внутрибольничную смертность с чувствительностью 81% и специфичностью 62%, а также продолжительность госпитализации более 10 дней – с чувствительностью 64% и специфичностью 65% [391]. Smith и соавт. показали, что увеличение концентрации креатинина в сыворотке крови за время госпитализации на 0,2 мг/дл (17,6 мкмоль/л) и более было связано с повышением риска смерти в течение последующих 6 месяцев на 67% и вероятности повторных госпитализаций на 33%. Причем увеличение концентрации креатинина крови за время госпитализации было более сильным предиктором смертности, чем его исходный уровень [856].

Krumholz и соавт. выделили независимые предикторы повышения концентрации креатинина в сыворотке крови за время госпитализации у больных с ХСН: мужской пол, исходную концентрацию креатинина в сыворотке крови >1,5 мг/дл (132 мкмоль/л), неконтролируемую гипертензию (САД >200 мм рт.ст.), ЧСС > 100 в минуту и хрипы, выходящие за пределы базальных отделов легких [533]. Cowie и соавт. показали, что к таким предикторам относится также фибрилляция предсердий [244]. Gottlieb, Forman и соавт. выявили значение для развития ухудшения функции почек за время госпитализации возраста, сопутствующей артериальной гипертензии (независимо от абсолютных цифр АД) и сахарного диабета [342, 391].

DeSilva и соавт. показали, что предикторами снижения функции почек в течение последующих 6 месяцев (после обследования) являются: сосудистая патология (острые нарушения мозгового кровообращения и транзиторные ишемические атаки, заболевания периферических сосудов, стеноз почечной артерии, аневризма брюшного отдела аорты, диагностированные при включении в исследование), лечение тиазидными диуретиками и исходный уровень мочевины в сыворотке выше 9 ммоль/л [266]. Не было значительных различий в проценте от максимально рекомендованной дозы ингибиторов АПФ, которая использовалась исходно и после периода наблюдения, у больных со снижением и увеличением СКФ [266]. Исходно
назначавшиеся дозы диуретиков не отличались у больных с увеличением и снижением СКФ, однако через 6 месяцев они были значительно выше у больных с ухудшением функции почек [266].

Причем взаимосвязь прогноза и дисфункции почек выявляется как у больных с поражением почек на фоне сопутствующей патологии, такой как сахарный диабет, так и у больных с «изолированной» ХСН. Причем прогностическое влияние при ХСН имеет не только снижение СКФ, но и наличие альбуминурии уровня A2[55].

Таким образом, повышение концентрации креатинина в сыворотке крови, снижение СКФ, а также альбуминурия уровня A2 и выше у больных с ХСН оказывают неблагоприятное прогностическое влияние.

У больных с АГ тоже часто развивается поражение почек как органа-мишени. Снижение СКФ <60 мл/мин/1,73м2 в течение 14 лет наблюдения регистрируется у 14,6% пациентов с АГ [43]. Сопоставляя эти данные и результаты нашего исследования очевидно, что только наличием АГ в анамнезе объяснить объяснить поражение почек при ХСН нельзя. Этот орган является отдельной мишенью при ХСН, что требует специфической органопротективной терапии.

Повышение АД, особенно систолического, является одной из наиболее значимых в популяции предикторов альбуминурии. Даже при повышенном нормальном АД (130-139/85-89 мм рт.ст.) вероятность развития микроальбуминурии увеличивается в 2,13 раза по сравнению со строго нормотензивными. Увеличение среднего АД на 10 мм рт.ст. повышает риск возникновения МАУ в 1,41 раза, САД - в 1,27 раза, диастолического АД (ДАД) - в 1,29 раза. У пациентов с АГ, не сочетающейся с инсулинорезистентностью (ИР) или СД-2, микроальбуминурия отражает гипертоническое поражение почек, конечным этапом которого является глобальный диффузный нефроангиосклероз [43].

При незначительном повышении креатинина сыворотки (115-133 мкмоль/л (1,3-1,5 мг/дл) у мужчин, 107-124мкмоль/л (1,2-1,4 мг/дл) у жен-
щины, снижении СКФ <60 мл/мин/1,73 м2 и/или микроальбуминурия пациента относят к категории высокого риска развития сердечно-сосудистых осложнений. При концентрации креатинина сыворотки >133 мкмоль/л (1,5 мг/дл) у мужчин, >124 мкмоль/л (1,4 мг/дл) у женщин, снижении СКФ <30 мл/мин/1,73 м2 и/или протеинурии (отношение Ал/Кр >300 мг/г) риск развития сердечно-сосудистых осложнений расценивается как очень высокий [43].

Учитывая значительный вклад ХСН в структуру заболеваемости и смертности населения, неблагоприятное прогностическое значение развития ХБП у этого контингента больных, необходима совместная работа нефрологов, кардиологов и терапевтов по изучению, своевременной диагностике ХБП у больных с ХСН и разработке нефропротективных стратегий для лечения этого опасного дуэта.

В нашей работе выживаемость больных с гиперфосфатемией была достоверно ниже, чем у больных без нее. Ранее была показана ассоциация неорганического фосфора с общей и сердечно-сосудистой смертностью при ХБП, в общей популяции, при ИБС [165, 166, 277, 356, 543, 902]. Наши данные согласуются с результатами исследования Plischke и соавт., в котором была показана взаимосвязь неорганического фосфора сыворотки и комбинированной конечной точки госпитализация+смерть [732]. Ess и соавт. в ретроспективном исследовании также продемонстрировали ассоциацию уровня фосфатов в сыворотке крови с комбинированной конечной точкой: смертность+трансплантация сердца [316]. Повышение уровня фосфатов на 1 мг/дл было связано с повышением смертности/трансплантации на 26%. Причем взаимосвязь не зависела от наличия ХБП. Изолированное прогностическое значение гиперфосфатемии как предиктора смертности нами выявлено впервые.

Причина прогностического влияния фосфатов не совсем ясна. Недавно было выявлено, что фосфат участвует в механизме обратной связи при окислительном фосфолипидировании и является продуктом гидролиза
ATФ, ограничивающим способность сердца к гидролизу ATФ [963]. Также было показано, что фосфат играет важную роль в снижении сократительной способности миокарда в условиях ишемии [415]. Причем фосфат оказывает влияние на эти процессы не только в сердце, но и в скелетных мышцах. Это наряду со снижением высвобождения кальция может приводить к ощущению слабости у больных с СН [120]. Кроме того, фосфат может стимулировать остеохондроцитарную трансформацию гладкомышечных клеток сосудов, что приводит к кальцификации сосудов посредством натрийзависимого фосфатного ко-транспортера, называемого Pit-1[557].

В нашем исследовании выявлено неблагоприятное прогностическое значение повышения уровня интактного ПГТ в сыворотке крови у больных с XCHнФВ. Достоверного прогностического влияния наличия остеопороза, снижения 25гидроксивитамина D, кальцитонина, остеокальцина, остеопротеоглобулина и С-теппептида выявлено не было. Смертность пациентов, отказавшихся от лечения остеопороза, была выше, чем получавших терапию.

В нашем исследовании достоверного прогностического значения отдельных лабораторных показателей функционального состояния печени выявлено не было. Выживаемость была достоверно хуже у пациентов с XCN и XCHнФВ со значениями индекса MELD-XI ≥11. В исследовании ESCAPE у больных с MELD-XI ≥16,8 был в 2 раза выше риск смерти, госпитализаций или трансплантации после коррекции по исходным функциональным печеночным тестам, возрасту, полу, расе, ИМТ, СД, САД (HR 2,06, 95%ДИ 1,05-4,03) [809]. В исследовании EVEREST меньшие значения альбумина и повышение общего билирубина были ассоциированы с повышением общей смертности. Внутрибольничное снижение альбумина и увеличение общего билирубина были ассоциированы с более высоким риском общей, сердечно-сосудистой смертности и частоты госпитализаций[124]. В исследовании ASCEND-HF повышение общего билирубина было ассоциировано с общей смертностью/повторными госпитализациями в течение 30 дней (HR1,17 на 1мг/дл повышения, 95%ДИ 1,04-
1,32; \p = 0,012) и с повышением смертности в течение 180 дней (HR 1,10, 95\%ДИ 0,97-1,25; \p = 0,13) на 1 мг/дл повышения. Ассоциации АСТ и АЛТ с прогнозом не выявлено [796]. В исследовании релаксина AHF концентрации АЛТ и АСТ были ассоциированы со смертностью в течение 180 дней (HR 1,52 \p = 0,030 и 1,97 \p = 0,013 соответственно) и ухудшением течения CH в течение 5 дней (HR 1,72 \p = 0,005 и 1,95 \p = 0,008 соответственно). Альбумин был ассоциирован со смертностью в течение 180 дней (HR 0,86; \p = 0,001), но не с ухудшением течения CH (HR 0,95, \p = 0,248). Общий белок был связан только с ухудшением течения CH (HR 0,91, \p = 0,004) [916]. В исследовании T. Yamada и соавт. показано, что значения индекса MELD-XI \geq 11 и \geq 13 соответственно независимо ассоциированы с повышением риска внезапной сердечной смертности (\p = 0,002) и смертности от прогрессирующей CH (\p = 0,003) [102]. Это полностью согласуется с нашими данными.

На наш взгляд, индекс MELD-XI, который изначально был предложен как прогностический маркер в гепатологии, правильнее рассматривать как маркер поражения и печени, и почек. Соответственно, при высоких значениях указанного индекса можно диагностировать гепаторенальный синдром, наличие которого неблагоприятно влияет на прогноз.

В нашем исследовании выживаемость была лучше у больных ХСНнФВ с общей емкостью легких выше медианы ее значений, в том числе при оценке по гелию. Выживаемость была хуже при значениях альвеолярного объема (VA) ниже 80% от должного. Это согласуется с данными Miniati M. и соавт, которые также при времени наблюдения в течение 2,7 лет показали, что снижение VA является сильным независимым прогностическим фактором выживаемости при ХСНнФВ [641]. Снижение альвеолярного объема может развиваться при рестрикции или повреждении альвеол или неравномерном распределении вдыхаемого воздуха вследствие бронхообструкции [455]. Недавно Gargiulo и соавт показали, что CH повышается уровень сурфактантных белков SP-B, SP-AиSP-D, и наилучшим
маркером биомаркером состояния альвеолярно-капиллярной мембраны при СН является сурфактантный белок SP-B[361].

Guazzi и соавт. показали, что умерших в их исследовании больных были ниже ОФВ1, ФЖЕЛ, МВВ, DL_{CO}, D_M (диффузионная способность мембраны) и объем крови в капиллярах (Vc), но независимым предиктором смертности оказалась только D_M[399]. Agostoni и соавт. выявили прогрессивное снижение DL_{CO} с нарастанием тяжести клинической симптоматики ХСН[110]. В нашем исследовании прогностического значения диффузионной способности легких (DL_{CO}) и ее взаимосвязи с клинической симптоматикой не выявлено.

При введении факторов, показавших свое влияние на выживаемость в моноварфакторном анализе, в регрессионную модель Кокса, было выявлено, что одним из самых сильных прогностических параметров является концентрация неорганического фосфора в сыворотке крови.

При пошаговом исключении из этой модели интактного ПТГ, ФК NYHA, TLC, работы при тредмилметрии прогностическое значение фосфора сыворотки сохранялось и было сопоставимо со значением ФВ ЛЖ и СКФ.

В настоящее время при неэффективности терапевтического лечения ХСН рекомендовано прибегать к хирургическим и механическим методам лечения. Несмотря на их большое разнообразие, уровень доказанности их эффективности и безопасности низок [37]. Даже операция трансплантации сердца, традиционно считавшаяся «средством выбора в лечении финальной стадии ХСН», согласно Рекомендациям ВНОК, «не имеет серьезного будущего» [37]. Учитывая это, данные о взаимосвязи выраженности симптоматики, переносимости физических нагрузок и прогноза при ХСН с параметрами почечной гемодинамики, функционального состояния почек, костно-минеральными нарушениями, поражением печени и бронхолегочного аппарата очень актуальны, поскольку они позволяют предположить, что при неэффективности других мероприятий к клиническому улучше-
нию и увеличению продолжительности жизни больных с ХСН может при-вести органопротективная терапия.

Таким образом, снижение скорости клубочковой фильтрации, наличие альбуминурии, хронической болезни почек, гиперфосфатемии и вторичного гиперпаратиреоза являются неблагоприятными прогностическими факторами у пациентов с ХСН. Требуется своевременная диагностика этих нарушений и внедрение превентивных стратегий для повышения продолжительности жизни больных с ХСН.

Заключение:

Таким образом, в последние годы ХСН стали рассматривать не только как последствие поражения сердца и нейрогуморальной активации, а как системную патологию, при которой развивается окислительный стресс, провоспалительный феномен и кахексия[122]. В нашей работе изучено поражение сердца, сосудов, почек, костной системы, бронхолегочного аппарата при этом заболевании, в т.ч. их характер, степень выраженности, распространенность, предикторы и механизмы, выделены группы повышенного риска по развитию поражения органов-мишеней, выявлено влияние поражения органов-мишеней на течение заболевания, выраженность клинической симптоматики, толерантность к физическим нагрузкам, взаимосвязь поражения органов-мишеней с состоянием сердечно-сосудистой системы, поражением других органов-мишеней, качеством жизни и прогнозом у больных с ХСН. Это дает основания перейти с миокардориентированной к многофункциональной как интра-, так и экскардиальной концепции ХСН и рассматривать ХСН как кардиоренальноостеогепатореспи-раторнометаболический синдром - полиорганную патологию, требующую мультидисциплинарного подхода в изучении и разработке тактики веде-

ния. Своевременная диагностика указанных нарушений, органопротективные мероприятия, поиск новых препаратов и оценка их влияния на органы-мишени, возможно, смогут уменьшить распространенность поражения ор-
ганов-мишеней, улучшить качество жизни и продолжительность жизни больных с ХСН [73].
ВЫВОДЫ

1. Хроническая сердечная недостаточность (ХСН) является полиорганной патологией, при которой развиваются структурные и функциональные нарушения как сердечно-сосудистой системы, так и почек, печени, бронхолегочного аппарата и костной системы с развитием кардиоренального, кардиогепатического, кардиореспираторного синдромов и комплекса костно-минеральных нарушений. В связи с этим целесообразен переход от миокардориентированной к многофункциональной как интра, так и экстракардиальной концепции сердечной недостаточности.

2. Развитию и прогрессированию поражения органов-мишеней при ХСН способствуют нарушение систолической и диастолической функции сердца, нейрогуморальная активация, фибрилляция предсердий, артериальная гипертензия и гипотензия, ожирение, нарушения пуриноового, белкового и углеводного обмена, генетические факторы, пожилой возраст, мужской пол, злоупотребление алкоголем, курение и воспаление. Эти факторы необходимо учитывать при стратификации персонального риска развития поражения органов-мишеней при ХСН.

3. Кардиоренальный синдром при ХСН представляет собой хроническую болезнь почек со снижением скорости клубочковой фильтрации и развитием альбуминурии. Предикторами поражения почек при ХСН являются большая выраженность клинической симптоматики ХСН, ишемическая этиология ХСН, большая длительность и тяжесть АГ в анамнезе, наличие сахарного диабета, фибрилляции предсердий, большая выраженность поражения сердца (гипертрофия, диастолическая дисфункция миокарда левого желудочка, легочная гипертензия, кальциноз клапанов сердца), возраст, активация системы воспаления.

4. Кардиогепатический синдром при ХСН включает гепатомегалию, развитие цитолитического, холестатического синдромов и реже печечно-клеточной недостаточности. Факторами риска поражения печени
как органа-мишени при ХСН являются тяжесть СН, систолическая дисфункция миокарда левого желудочка и снижение функционального состояния почек.

5. Частым проявлением поражения бронхолегочного аппарата у пациентов с ХСН является рестриктивный тип вентиляционных нарушений. Факторами риска поражения поражения бронхолегочного аппарата является тяжесть СН, снижение толерантности к физической нагрузке, активация системы воспаления, снижение сердечного выброса и снижение почечного кровотока.

6. Костно-минеральные нарушения при ХСН представлены гипокальциемией, гиперфосфатемией, дефицитом/недостаточностью витамина D, вторичным гиперпаратиреозом, остеопенией и остеопорозом. Больные с ХСН являются группой повышенного риска возникновения минерально-костных нарушений, остеопороза и связанных с ним переломов.

7. Поражение органов-мишений при ХСН связано с увеличением тяжести клинической симптоматики, снижением переносимости физических нагрузок, ухудшением качества жизни, ускорением прогрессирования ХСН, поражением других органов-мишений и повышением смертности. Неблагоприятными прогностическими факторами, связанными с поражением органов-мишений при ХСН, являются снижение скорости клубочковой фильтрации, наличие альбуминурии, вторичный гиперпаратиреоз, гиперфосфатемия, повышение значений индекса MELD-XI, с снижение общей емкости легких и альвеолярного объема. Это необходимо учитывать при разработке дальнейших направлений по улучшению прогноза при ХСН.

8. В комплексный подход к индивидуальной тактике ведения пациентов с ХСН и поражением органов-мишений необходимо включать мероприятия, направленные на профилактику и лечение поражения различных органов-мишений, в том числе приверженность к диетическому ограничению потребления фосфатов, достаточное пребывание на солнце, дози-
рованные физические нагрузки.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

1. При формулировке диагноза больным с хронической сердечной недостаточностью необходимо указывать наличие поражений органов-мишеней, их клинические варианты и стадии.

2. С целью своевременного выявления поражения органов-мишеней алгоритм обследования и медикоэкономические стандарты ведения всех больных с хронической сердечной недостаточностью следует включать оценку скорости клубочковой фильтрации по формулам CKD-EPI и MDRD, количественное определение суточной экскреции альбумина с мочой, ультразвуковое исследование печени и почек, печеночные функциональные тесты, исследование функции внешнего дыхания и денситометрию.

3. При однократном выявлении снижения скорости клубочковой фильтрации у госпитализированных пациентов с хронической сердечной недостаточностью целесообразно повторить исследование и при повторном выявлении снижения скорости клубочковой фильтрации диагностировать хроническую болезнь почек.

4. С учетом неблагоприятного влияния на прогноз для профилактики и коррекции гиперфосфатемии у больных с хронической сердечной недостаточностью целесообразно ограничивать потребление фосфатов с пищей (путем замены белков животного на белки растительного происхождения, отказа от употребления полуфабрикатов, консервантов и фастфуда) и контролировать уровень неорганического фосфора в сыворотке крови (целевой уровень фосфора в сыворотке крови 2,7-4,6 мг/дл). Для возможного расчета потребления фосфатов с пищей необходимо обязать производителей продуктов питания указывать содержание фосфатов на этикетках производимых продуктов.

5. Определение минеральной плотности костной ткани и оценка вероятности перелома с помощью модели FRAX в динамике у больных с хронической сердечной недостаточностью необходимы для своевременной
диагностики остеопении, остеопороза и оценки риска развития переломов. При выявлении остеопороза и высоком риске переломов у пациентов с хронической сердечной недостаточностью необходимо рассмотрение вопроса об их медикаментозной терапии.

6. Поскольку использование нижней границы нормы (LLN) при анализе результатов спирометрии продемонстрировал наибольшую согласованность с клинико-анамнестическими данными, целесообразно в практической работе для оценки спирометрии использовать LLN наряду с системой должных значений (% от должного).
Таблица 2.8. Разработанный на кафедре госпитальной терапии №2 РГМУ опросник выраженности симптоматики ХСН [72].

В качестве ответа на вопрос обведите одну соответствующую цифру. Ответы можно давать с помощью врача.

<table>
<thead>
<tr>
<th>1) Жалобы в настоящее время</th>
<th>Нет или бывает только при быстрой ходьбе</th>
<th>Возникает при ходьбе обычным шагом</th>
<th>Возникает при любом движении</th>
<th>Бывает при всем вышеперечисленном и в покое</th>
</tr>
</thead>
<tbody>
<tr>
<td>а. Одышка</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>б. Сердцебиение и/или перебой</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>в. Боли в области сердца</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>г. Кровохарканье</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>д. Отеч на ногах</td>
<td>нет или небольшие отеки на ступнях 1</td>
<td>на голенях до бедер</td>
<td>выше бедер и/или на теле</td>
<td></td>
</tr>
<tr>
<td>е. Мерцательная аритмия</td>
<td>нет</td>
<td>Непостоянная, преходящая 2</td>
<td>Постоянная, требует приема дигоксина 2 или > препаратов 4</td>
<td></td>
</tr>
<tr>
<td>ж. Беспо-</td>
<td>нет или при</td>
<td>при</td>
<td>при</td>
<td>при всем выше ука-</td>
</tr>
<tr>
<td>1</td>
<td>быстрый ходьбе или при другой интенсивной нагрузке 1</td>
<td>обычной нагрузке</td>
<td>незначительной нагрузке</td>
<td>занном и в покое, постоянно 4</td>
</tr>
<tr>
<td>2</td>
<td>нет или возникает только при или после большей нагрузки 1</td>
<td>возникает при или после обычной нагрузки 2</td>
<td>не позволяет выполнить легкую работу по дому 3</td>
<td>выраженная, в состоянии покоя 4</td>
</tr>
</tbody>
</table>

2). Охарактеризуйте свои физические возможности в настоящее время следующим образом: обычно, если прохожие идут по людной улице, они все шагают примерно с одинаковой скоростью. Вы в настоящее время

1 – можете идти вместе со всеми с такой же скоростью сколько угодно долго или, по крайней мере, пройдете в таком темпе более километра

2 – пройдете с такой же скоростью, вместе со всеми 500 м или несколько больше и остановитесь из-за одышки, слабости, сердцебиения или болей в груди и т.д

3 – сумеете пройти вместе со всеми прохожими около 200 м и остановитесь из-за этих симптомов, или сумеете пройти медленным шагом несколько большее расстояние

4 – постоянно плохо себя чувствуете и без нагрузки, можете пройти очень мало (50 м) или совсем не можете двигаться из-за указанных симптомов, любая нагрузка вызывает у Вас одышку, удущье, кашель, слабость, сердцебиение и т.д.

3). В последнее время Вы постоянно или почти постоянно работали на своем обычном месте, участвовали в общественной жизни 1
работали на своем обычном месте, занимались домашним хозяйством или общественной работой, но при этом увеличилась потребность в посторонней помощи или произошло существенное снижение часов работы, или Вы часто вынуждены были находиться на больничном листе 2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>не были в состоянии работать или вести домашнее хозяйство 3</td>
<td></td>
</tr>
<tr>
<td>4). В течение последнего времени Вы могли самостоятельно принимать душ, мыться, ходить в туалет и одеваться, пользоваться общественным транспортом или самостоятельно водить машину 1</td>
<td></td>
</tr>
<tr>
<td>5). В течение последнего времени Вы производили впечатление человека, который чувствует себя хорошо и говорили о своем хорошем самочувствии 1</td>
<td></td>
</tr>
<tr>
<td>имели пониженную энергичность и чувствовали себя хорошо только иногда 2</td>
<td></td>
</tr>
<tr>
<td>чувствовали себя больным или просто плохо; ощущали слабость, изнеможение большую часть времени 3</td>
<td></td>
</tr>
<tr>
<td>6). В течение последнего времени у Вас были хорошие взаимоотношения с окружающими Вас людьми, Вы ощущали хорошую поддержку со стороны членов семьи и друзей 1</td>
<td></td>
</tr>
<tr>
<td>по Вашему мнению, поддержка со стороны членов семьи и друзей была ограниченной 2</td>
<td></td>
</tr>
<tr>
<td>получали поддержку редко, только в случаях крайней необходимости 3</td>
<td></td>
</tr>
<tr>
<td>7). В последнее время Вы обычно положительно оценивали свои перспективы 1</td>
<td></td>
</tr>
<tr>
<td>имелось ощущение беспомощности, периодически возникала явная тревога или депрессия 2</td>
<td></td>
</tr>
<tr>
<td>имеется постоянная тревога или депрессия из-за ощущения беспомощности 3</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 2.9. Канзасский опросник выраженности симптоматики ХСН [295].

Представленные ниже вопросы касаются имеющейся у Вас сердечной недостаточности и ее влияния на Вашу жизнь за последние 2 недели. Исходите из того, что нет правильных или неправильных ответов. Отмечайте пункт наиболее соответствующий Вашему состоянию.

1. Сердечная недостаточность проявляется у различных больных по-разному. У части пациентов преобладает одышка, у других – слабость. Ответьте, пожалуйста, насколько сильно Ваше самочувствие мешало Вам выполнять следующие действия (обведите одну цифру в каждом вопросе):

<table>
<thead>
<tr>
<th>Действие</th>
<th>Чрезвычайно мешало</th>
<th>Достаточно сильно</th>
<th>Умеренно</th>
<th>Слабо</th>
<th>Совсем не затрудняло</th>
<th>Действие было затруднено по другим причинам или не выполнялось</th>
</tr>
</thead>
<tbody>
<tr>
<td>А. Самостоятельно одеться</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Б. Принять душ или ванну</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>В. Пройти один квартал по ровной дороге</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Г. Работать на даче, или дома, нести продукты</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Д. Поднятьсь по лестнице на один пролет без остановок</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Е. Ускорить шаг или побежать (например, за автобусом)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Сравните, пожалуйста, свое самочувствие сейчас и 2 недели назад. Изменились ли симптомы Вашего заболевания (одышка, отеки, боль) за это время? (выберите один из ответов)
1. Сейчас мне намного хуже.
2. Сейчас я чувствую себя несколько хуже.
3. Мое самочувствие не изменилось.
4. Сейчас я чувствую себя несколько лучше.
5. Сейчас мне намного лучше.
6. За последние 2 недели указанные симптомы не возникали.

<table>
<thead>
<tr>
<th>3.</th>
<th>Как часто у Вас были отеки ног по утрам?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Каждое утро.</td>
</tr>
<tr>
<td>2.</td>
<td>3 или больше раз в неделю, но не каждый день.</td>
</tr>
<tr>
<td>3.</td>
<td>1-2 раза в неделю.</td>
</tr>
<tr>
<td>4.</td>
<td>Меньше, чем 1 раз в неделю.</td>
</tr>
<tr>
<td>5.</td>
<td>За последние 2 недели отеков на ногах не было.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.</th>
<th>Насколько сильно Вас беспокоили отеки на ногах?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Очень сильно беспокоили.</td>
</tr>
<tr>
<td>2.</td>
<td>Довольно часто беспокоили.</td>
</tr>
<tr>
<td>3.</td>
<td>Беспокоили иногда.</td>
</tr>
<tr>
<td>4.</td>
<td>Редко беспокоили.</td>
</tr>
<tr>
<td>5.</td>
<td>Не беспокоили совсем.</td>
</tr>
<tr>
<td>6.</td>
<td>Отечков не было.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.</th>
<th>Как часто, в среднем, слабость не позволяла Вам выполнять обычные повседневные обязанности?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Все время.</td>
</tr>
<tr>
<td>2.</td>
<td>Почти постоянно.</td>
</tr>
<tr>
<td>3.</td>
<td>Очень часто, но не всегда.</td>
</tr>
<tr>
<td>4.</td>
<td>3 или больше раз в неделю, но не каждый день.</td>
</tr>
<tr>
<td>5.</td>
<td>1-2 раза в неделю.</td>
</tr>
<tr>
<td>6.</td>
<td>Меньше, чем 1 раз в неделю.</td>
</tr>
<tr>
<td>7.</td>
<td>Не мешала за последние 2 недели.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>Насколько сильно слабость беспокоила Вас?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Чрезвычайно сильно.</td>
</tr>
<tr>
<td>2.</td>
<td>Достаточно.</td>
</tr>
<tr>
<td>3.</td>
<td>Умеренно.</td>
</tr>
<tr>
<td>4.</td>
<td>Слека.</td>
</tr>
<tr>
<td>5.</td>
<td>Не беспокоила.</td>
</tr>
<tr>
<td>6.</td>
<td>Не ощущал слабости.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.</th>
<th>Как часто (в среднем) одышка мешала Вам выполнять Ваши повседневные обязанности?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Все время.</td>
</tr>
<tr>
<td>2.</td>
<td>Почти постоянно.</td>
</tr>
<tr>
<td>3.</td>
<td>Очень часто, но не всегда.</td>
</tr>
<tr>
<td>4.</td>
<td>3 или больше раз в неделю, но не каждый день.</td>
</tr>
<tr>
<td>5.</td>
<td>1-2 раза в неделю.</td>
</tr>
</tbody>
</table>
6. Меньше, чем 1 раз в неделю.
7. Не мешала за последние 2 недели.

8. Как сильно одышка беспокоила Вас?
1. Чрезвычайно сильно.
2. Достаточно.
3. Умеренно.
4. Слегка.
5. Не беспокоила.
6. Не ощущал одышки.

9. Как часто (в среднем) Вы были вынуждены спать ночной сидя или на 3 и более подушках из-за ночной одышки?
1. Каждую ночь.
2. 3 или больше ночей в неделю, но не каждую ночь.
3. 1-2 ночи в неделю.
4. Меньше 1 ночи в неделю.
5. Ни разу за последние 2 недели.

10. Уверены ли Вы, что знаете, как необходимо действовать и к кому обратиться при резком ухудшении Вашего самочувствия?
1. Не уверен.
2. Не совсем уверен, что сумею поступить правильно.
3. Знам как действовать более или менее уверенно.
4. Знам как действовать в большинстве ситуаций.
5. Совершенно уверен.

11. Хорошо ли Вы знаете, что необходимо делать, чтобы Ваше самочувствие не ухудшалось (например, контроль веса, ограничение потребления соли и др.)?
1. Не знаю.
2. Знам, но не очень хорошо.
3. Кое-что знаю.
4. Знам почти все.
5. Знам очень хорошо.

12. Насколько сильно симптомы Вашего заболевания мешали Вам получать полное удовольствие от жизни?
1. Я не получаю удовольствие от жизни совсем.
2. Мое состояние сильно мешает получать полное удовольствие от жизни.
3. Мое состояние не очень часто мешает получать полное удовольствие от жизни.
4. Мое состояние немного мешает получать полное удовольствие от жизни.
5. Мое состояние не мешает получать полное удовольствие от жизни.

13. Если бы Вам пришлось прожить всю жизнь, имея сегодняшнее состояние здоровья, как бы Вы себя чувствовали?
1. Неудовлетворенным жизнью.
2. В основном неудовлетворенным жизнью.
3. Не вполне удовлетворенным жизнью.
4. В основном удовлетворенным жизнью.
5. Полностью удовлетворенным жизнью.

14. Как часто Вы ощущали робость, уныние и подавленность из-за симптомов Вашего заболевания?
1. Я чувствовал себя так все время.
2. Я чувствовал себя так большую часть времени.
3. Я чувствовал себя так время от времени.
4. Я чувствовал себя так редко.
5. Таких ощущений не было.

15. Как сильно симптомы Вашего заболевания влияют на Ваш образ жизни? Как сильно за последние 2 недели они затрудняли Ваше участие в следующих видах деятельности? (обведите одну цифру в каждом вопросе)

<table>
<thead>
<tr>
<th></th>
<th>Очень сильно</th>
<th>Довольно сильно</th>
<th>Умеренно</th>
<th>Слабо</th>
<th>Никогда не затрудняют</th>
<th>Невыполнялось по другой причине</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хобби, активный отдых</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Интимные отношения</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Ходить в гости</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Работа по дому</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Таблица 2.10. Миннесотский опросник качества жизни больных с ХСН (Minnesota Living with Heart Failure questionnaire) [759].

Этот опросник предназначен для оценки того, как сердечная недостаточность ограничивала Ваши возможности в последнее время. Представленные ниже вопросы отражают различные варианты влияния сердечной недостаточности на жизнь страдающих ею больных. Если Вы уверены, что данного симптома у Вас нет или он не оказывал существен-
Его влияния на Вашу жизнь последнее время, обведите цифру «0»(Нет). Если указанный симптом имеется и мешает Вам жить так, как бы Вы хотели, обведите цифры от «1» до «5» в соответствии с тяжестью симптома по возрастающей.

<table>
<thead>
<tr>
<th>Симптом</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отечность стоп, голеней и т.д.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Необходимость отдыхать сидя или лежа в течение дня</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Трудности при ходьбе или при подъеме по лестнице</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ограничения при работе по дому или на дачном участке</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Невозможность дальних поездок</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нарушения полноценного сна в ночной время</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Трудности во взаимоотношениях с членами семьи или друзьями</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ограничения возможности зарабатывать на жизнь</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Невозможность полноценного активного отдыха, занятий спортом</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Невозможность полноценной половой жизни</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соблюдение диеты, ограничивающей количество и разнообразие употребляемых продуктов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ощущение нехватки воздуха</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ощущение усталости, утомления, отсутствия энергии</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Необходимость периодически находиться в больнице</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Трата денег на лекарства</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Побочные действия лекарств</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ощущение, что Вы обуза для семьи и друзей</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ощущение беспомощности</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ощущение беспокойства</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Неспособность сконцентрироваться и снижение памяти</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Депрессия</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблица 2.11. Шкала оценки клинического состояния больного [4].

<table>
<thead>
<tr>
<th>Ознака</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Одышка</td>
<td>Нет</td>
<td>При нагрузке</td>
<td>В покое</td>
<td></td>
</tr>
<tr>
<td>Изменился ли за последнюю неделю вес</td>
<td>Нет</td>
<td>Увеличился</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Жалобы на перебои в работе сердца</td>
<td>Нет</td>
<td>Есть</td>
<td></td>
<td></td>
</tr>
<tr>
<td>В каком положении находится в постели</td>
<td>Горизонтально</td>
<td>С приподнятым головным концом (+2 подушки)</td>
<td>1 + ночные удушия</td>
<td>Сидя</td>
</tr>
<tr>
<td>Набухшие шейные вены</td>
<td>Нет</td>
<td>Лежа</td>
<td>Стоя</td>
<td></td>
</tr>
<tr>
<td>Хрипы в легких</td>
<td>Нет</td>
<td>Нижние отделы (до 1/3)</td>
<td>До лопаток (до 2/3)</td>
<td>Над всей поверхностью легких</td>
</tr>
<tr>
<td>Наличие ритма галопа</td>
<td>Нет</td>
<td>Есть</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Печень</td>
<td>Не увеличена</td>
<td>До 5 см</td>
<td>Более 5 см</td>
<td></td>
</tr>
<tr>
<td>Отеки</td>
<td>Нет</td>
<td>Пастозность</td>
<td>Отеки</td>
<td>Анасарка</td>
</tr>
<tr>
<td>Уровень АД</td>
<td>>120</td>
<td>100-120</td>
<td><100</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.13. Определение нижней границы нормы для индекса Генслера (LLN, на основании 1,64 SD)

<table>
<thead>
<tr>
<th>Женщины</th>
<th>LLN для ОФВ1/ФЖЕЛ</th>
<th>Мужчины</th>
<th>Возраст</th>
</tr>
</thead>
<tbody>
<tr>
<td>Возраст</td>
<td></td>
<td>Возраст</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>74</td>
<td>25-27</td>
<td></td>
</tr>
<tr>
<td>26-31</td>
<td>73</td>
<td>28-33</td>
<td></td>
</tr>
<tr>
<td>32-36</td>
<td>72</td>
<td>34-38</td>
<td></td>
</tr>
<tr>
<td>37-41</td>
<td>71</td>
<td>39-44</td>
<td></td>
</tr>
<tr>
<td>42-46</td>
<td>70</td>
<td>45-49</td>
<td></td>
</tr>
<tr>
<td>47-52</td>
<td>69</td>
<td>50-55</td>
<td></td>
</tr>
<tr>
<td>53-57</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58-62</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63-68</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>69-73</td>
<td>65</td>
<td>56-60</td>
<td></td>
</tr>
<tr>
<td>74-78</td>
<td>64</td>
<td>61-66</td>
<td></td>
</tr>
<tr>
<td>79-80</td>
<td>63</td>
<td>67-71</td>
<td></td>
</tr>
<tr>
<td>>80</td>
<td>62</td>
<td>72-77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>78-80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>>80</td>
<td></td>
</tr>
</tbody>
</table>
Клинические примеры

Больная К.М.Е.

Подобрана терапия: Варфарин 2,5-5 мг под контролем МНО, затем прадакса 110 мг* 2 р/д, Торасемид 10-12,5 мг, Лозартан 25мг, затем моно-прил 2,5-40 мг, Карведилол 25-50мг, Симвастатин 10-40 мг под контролем липидограммы, Спиронолактон 25мг, Аллопуринол 200мг, затем 100 мгпод контролем уровня мочевой кислоты, Диоксин 0,25 мг/сут.

В ноябре 2013г впервые выявлен СД 2 типа, назначен глимепирид 4 мг, на фоне чего уровень гликемии 5,7-5,5 ммоль/л.
В апреле 2014 – многочисленные паузы до 2,8 при ХМ-ЭКГ, консультирована кардиохирургом, рекомендована коррекция медикаментозной ритмурежащей терапии: отменен дигоксин.С апреля 2015 – головокружение, нарастание одышки, слабости. При холтеровском мониторировании фибрилляция предсердий, 7 пауз, максимальная пауза 2,256 сек в 0:36. ЖТ - 1 (9 сек) с ЧСС 92 ударов в минуту в 14:24. Консультирована кардиохирургом, показаний к хирургическому вмешательству не выявлено.В мае 2015 – эпизод потери сознания, 24.06.15 имплантирован ПЭКС SensiaSR. Пациентка выписана с улучшением и продолжает наблюдатьсь на кафедре госпитальной терапии №2.

Динамика лабораторный данных за время наблюдения представлена в таблице 5.1.

Таблица 5.1. Динамика лабораторных показателей больной К.

<table>
<thead>
<tr>
<th></th>
<th>29.6.10</th>
<th>7.10.10</th>
<th>12.1.11</th>
<th>16.2.12</th>
<th>31.7.12</th>
<th>6.11.13</th>
<th>17.4.14</th>
<th>13.5.15</th>
<th>23.6.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин, г/л</td>
<td>133</td>
<td>135</td>
<td>135</td>
<td>143</td>
<td>147</td>
<td>153</td>
<td>140</td>
<td>149</td>
<td>152</td>
</tr>
<tr>
<td>Глюкоза, ммоль/л</td>
<td>5,3</td>
<td>5,3</td>
<td>6,1</td>
<td>5,7</td>
<td>4,8</td>
<td>7</td>
<td>4,9</td>
<td>4,6</td>
<td>4,7</td>
</tr>
<tr>
<td>Общий белок, г/л</td>
<td>86</td>
<td>84</td>
<td>75</td>
<td>72</td>
<td>78</td>
<td>77</td>
<td>75</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Альбумин, г/л</td>
<td>49</td>
<td>54</td>
<td>41</td>
<td>41</td>
<td>38</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мочевина, ммоль/л</td>
<td>16,7</td>
<td>13,4</td>
<td>11,2</td>
<td>8,4</td>
<td>10,3</td>
<td>10,8</td>
<td>7,7</td>
<td>9,8</td>
<td></td>
</tr>
<tr>
<td>Креатинин, ммоль/л</td>
<td>103</td>
<td>154;143</td>
<td>119</td>
<td>89</td>
<td>86</td>
<td>122</td>
<td>90</td>
<td>96</td>
<td>95</td>
</tr>
<tr>
<td>СКФ MDRD, мл/мин/1,73м²</td>
<td>47</td>
<td>29;32</td>
<td>39</td>
<td>55</td>
<td>57</td>
<td>38</td>
<td>54</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>Мочевая кислота, ммоль/л</td>
<td>552</td>
<td>699</td>
<td>567</td>
<td>380</td>
<td>382</td>
<td>434</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кальций, ммоль/л</td>
<td>1,79</td>
<td>2,5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Показатель</td>
<td>30.06.10</td>
<td>13.01.11</td>
<td>22.11.13</td>
<td>17.04.14</td>
<td>18.05.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЛП, см</td>
<td>4,54</td>
<td>6,39</td>
<td>6,28*4,91</td>
<td>6,37*4,74, 75,4 мл</td>
<td>6,35*4,21, 64,9мл</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

При ЭХОкт в начале наблюдения аорта-3.04 см, стенка ее уплотнена.

Створки МК, АК уплотнены, раскрытие полное, включения кальция отсутствуют. Картина рубцовых изменений миокарда ЛЖ с формированием септотипической аневризмы: гипо- и акинез базального сегментов МЖП, дискинез верхушки, апикального, среднего сегмента МЖП, нельзя исключить тромботические наложения в области верхушки. Систолическая дисфункция миокарда ЛЖ. Диастолическая дисфункция 2 типа. Легочная гипертензия 1ст. Небольшое количество жидкости в полости перикарда. С 2014 года появились включения кальция в основаниях створок и фиброзные кольца МК и АК. Динамика различных показателей ЭХОкт за время наблюдения представлена в таблице 5.2.

Таблица 5.2. Динамика различных показателей ЭХОкт больной К.М.Е.
<table>
<thead>
<tr>
<th>ПП, см</th>
<th>3,85</th>
<th>3,56</th>
<th>4,86, 79 мл</th>
<th>5,54*3,97, 52,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>КДР ЛЖ, см</td>
<td>2,99</td>
<td>2,19</td>
<td>2,49</td>
<td>2,48</td>
</tr>
<tr>
<td>Т мжп, см</td>
<td>1,11</td>
<td>1,1</td>
<td>1,18</td>
<td>1,22</td>
</tr>
<tr>
<td>КДР ЛЖ, см</td>
<td>4,98</td>
<td>5,04</td>
<td>4,53</td>
<td>4,74</td>
</tr>
<tr>
<td>Т зс, см</td>
<td>1,11</td>
<td>1,27</td>
<td>1,18</td>
<td>1,16</td>
</tr>
<tr>
<td>ИММ/BSA, г/м²</td>
<td>118</td>
<td>127,9</td>
<td>117,9</td>
<td>105</td>
</tr>
<tr>
<td>КДО ЛЖлж, мл</td>
<td>145,2</td>
<td>142,6</td>
<td>135,6</td>
<td>122,6</td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>40</td>
<td>45,2</td>
<td>39,8</td>
<td>43</td>
</tr>
<tr>
<td>УИ ЛЖ, мл/м²</td>
<td>27,3</td>
<td>30</td>
<td>37,4</td>
<td></td>
</tr>
<tr>
<td>СИ ЛЖ, л/мин/м²</td>
<td>1,53</td>
<td>1,38</td>
<td>3,24</td>
<td></td>
</tr>
<tr>
<td>Е, м/с</td>
<td>0,761</td>
<td>0,708</td>
<td>0,893</td>
<td></td>
</tr>
<tr>
<td>Е/А</td>
<td>1,16</td>
<td>1,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Е/Em</td>
<td>5,16</td>
<td>4,78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>МР, степень</td>
<td>II</td>
<td>II</td>
<td>I</td>
<td>III</td>
</tr>
<tr>
<td>ПР, степень</td>
<td>III</td>
<td>II</td>
<td>I</td>
<td>IV</td>
</tr>
<tr>
<td>СДЛА, мм рт.ст.</td>
<td>36,2</td>
<td>31</td>
<td>33</td>
<td>36,8</td>
</tr>
</tbody>
</table>

Биохимический анализ мочи:

- **08.10.10**
 Биохимический анализ мочи: креатинин (сутки) - 13,07 ммоль/сут (5~18), мочевина (сутки) - 339 ммоль/сут (300~550), мочев. кислота (сутки) - 1,91 ммоль/сут (1,5~4,5), кальций (сутки) - 2,63 ммоль/сут (2,5~8), хлориды (сутки) - 132 ммоль/сут (85~170), калий (сутки) - 76,2 ммоль/сут (35~80), натрий (сутки) - 91,2 ммоль/сут (30~300), фосфаты неорган. (сутки) - 22,08 ммоль/сут (12~42), глюкоза (п. кол.) - 0,71 ммоль/л (0~0,8),

- **17.01.11**
 Биохимический анализ мочи: креатинин (сутки) - 7,14 ммоль/сут (5~18), мочевина (сутки) - 235 ммоль/сут (300~550), мочев. кис-
лота (сутки)-1.63 ммоль/сут (1.5–4.5), кальций (сутки)-1.74 ммоль/сут (2.5–8), хлориды (сутки)-166.7 ммоль/сут (85–170), калий (сутки)-59.4 ммоль/сут (35–80), натрий (сутки)-137.5 ммоль/сут (30–300), фосфаты-орган. (сутки)-17.4 ммоль/сут (12–42), глюкоза (сут.)-0.33 ммоль/сут (0–0.8),

NT-Pro-BNP 95,5.

01.11: Экскреция альбумина с мочой 49,9 мг/л, 02.12 - 3,44 мг/л.

Интактный ПТГ 52 нг/мл, 25 (ОН) витамин D 30,1 нмоль/л, Кальцитонин 11,07 пг/мл, Остеокальцин 19,2, Остеопротегерин 167.

Результаты генотипирования: ADRB2-27Glu/Glu, GNB3tt, TP53 Pro/Pro.

17.01.11-18.01.11 СМАД: За время суточного мониторирования макс. САД 149 мм.рт.ст., ДАД 75 мм.рт.ст. Среднее САД 108 мм.рт.ст., ДАД 55 мм.рт.ст. Уровень гипербарической нагрузки за сутки в пределах.

УЗИ почек, надпочечников, забрюшинного пространства: Диффузные изменения паренхимы обеих почек.

Консультация окулиста: ОИ- гипертоническая ангиопатия сетчатки.

Дуплексное сканирование экстракраниальных отделов брахикефальных артерий: Атеросклероз общих, внутренних сонных артерий. С-образная извитость ОСА и ВСА.

17.01.11 Денситометрия левого тазобедренного сустава: МПК снижена до значений остеопении, максимальное снижение в шейке бедра (Т= -2,12 SD). Денситометрия правого тазобедренного сустава: МПК снижена до значений остеопении, макс. в шейке бедра Т=(-2,19 SD). Денситометрия по-
звоночника: МПК снижена до значений остеопороза, максимальное снижение L2 (T=-3,76 SD), L4 (T=-3,22 SD). Рекомендован прием алендроната (fosamax, тевана 70 мг/неделю) и Ca D3 никомед форте 2 таб ежедневно, принимала в течение 2 лет. При контрольной денситометрии — повышение МПК до нормального уровня.

Данный клинический случай отражает прогрессирование кардиальной патологии в соответствии с этапами сердечно-сосудистого континуума: АГ, ИБС, ОИМ, ПИКС, постинфарктное ремоделирование миокарда с формированием хронической аневризмы левого желудочка, ХСН, ФП, МЭС, ПЭКС.

Хроническая болезнь почек 3 стадии развилась у пациентки без первичной почечной патологии с длительным анамнезом АГ, перенесенным ИМ, ХСН. Сахарный диабет 2 типа манифестировал у больной с ХСН за время наблюдения, вероятно, за счет развития инсулинорезистентности на фоне нарушения периферического кровообращения. Причем на фоне тенденции к гипотензии при СМАД, в особенности в ночные часы, было отмечено снижение функции почек с последующим ее улучшением на фоне ликвидации гипотензии.

Своевременной диагностикой и лечением остеопороза у больной удалось избежать переломов до настоящего времени. Адекватная терапия с
включением нефропротекции (диета, назначение ингибиторов АПФ с двойным путем выведения, статинов, коррекция гиперурикемии, кальций-фосфорного обмена и гиповитаминоза D, сахароснижающая терапия, отказ от ацетилсалициловой кислоты, назначение антикоагулянтной терапии) позволили избежать прогрессирования ХБП за время наблюдения. Комбинация медикаментозной и хирургической тактики ведения обеспечили пациентке 5-летнюю выживаемость без сердечно-сосудистых событий. Генотип этой больной Glu/Glu гена ADRB2-27 связан с меньшей выраженностью клинической симптоматики, но большей частотой развития брадикардии и пауз. Этот клинический пример подтверждает необходимость тщательного внимания к проблеме поражения почек, костной системы, в т.ч. остеопороза, генетических предикторов у больных с ХСН, внедрения превентивных стратегий.

Больной Ш.И.Н.

1.11.12 госпитализация в связи с декомпенсацией ХСН, во время которой на фоне брадисистолической формы фибрилляции предсердий дебютировала почечная недостаточность. 03.11.12 развился пароксизм трепетания предсердий с ЧСС 180 в мин, переведен в реанимационное отделение. 06.11.12 пароксизм трепетания предсердий купирован, по поводу брадисистолии имплантирован ЭКС.

В 2013 г. в АКШ было отказано по причине тяжелой полиорганной недостаточности. Многократно подобиралась терапия. На фоне приема
варфарина появились высыпания на коже по типу некрозов, гематом, варфарин отменен. На фоне приема прадаксы - нарастание креатинина с болевым синдромом в эпигастрии. Перед последней госпитализацией получал карведилол, кардиомагнил, кордарон, аторвастатин, диурексин, фуросемид, диувер. В течение последнего года тенденция к гипотонии. Настоящее ухудшение состояния в течение месяца, когда стала нарастать слабость, одышка, увеличение живота, отсутствовал аппетит. Неоднократно вызывал СМП, вводился фуросемид с некоторым эффектом, от госпитализации отказался. 09.02.15 в связи с ухудшением самочувствия госпитализирован. Несмотря на проводимую терапию, 11.02.15 скончался.

Данные лабораторного и инструментального методов обследования

Анализы:

<p>| Гемоглобин, г/л | 24.05 12.04 07/1 05.11 07/1 05.11 07.12 02.11 15.01 03.12 22.12 02.11 | 10/1 07.12 23.11 20.06 09.13 30.12 09.11 |
| Глюкоза, ммоль/л | 23.11 07.12 11.12 10.11 09.14 |
| Общий белок, г/л | 23.11 10.11 08.11 |
| Альбумин, | 23.11 10.11 08.11 |</p>
<table>
<thead>
<tr>
<th></th>
<th>г/л</th>
<th>8,3</th>
<th>12,5</th>
<th>17,</th>
<th>13</th>
<th>19,</th>
<th>20,5/</th>
<th>20,5</th>
<th>28,</th>
<th>24,</th>
<th>23,7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мочевина, моль/л</td>
<td></td>
</tr>
<tr>
<td>Креатинин, мкмоль/л</td>
<td>13</td>
<td>5 11</td>
<td>217/</td>
<td>17</td>
<td>13</td>
<td>25</td>
<td>209/</td>
<td>199/</td>
<td>24</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>141</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>132</td>
<td>121</td>
<td>0</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>СКФ MDR Ds</td>
<td>46 55</td>
<td>26/ 4</td>
<td>34</td>
<td>44</td>
<td>21</td>
<td>27/ 6</td>
<td>29/ 5</td>
<td>29/ 1</td>
<td>23</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>17/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Мочевая кислота, мкмоль/л</td>
<td>60 8</td>
<td>47</td>
<td>55</td>
<td>6</td>
<td>502</td>
<td>629</td>
<td>56</td>
<td>68</td>
<td>76</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЩФ, МЕ/л</td>
<td></td>
<td></td>
<td>211</td>
<td>23</td>
<td>4</td>
<td>608</td>
<td>21</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ЛДГ, Ед/л</td>
<td>54 0</td>
<td>608</td>
<td>54</td>
<td>0</td>
<td>608</td>
<td>54</td>
<td>0</td>
<td>608</td>
<td>54</td>
<td>0</td>
<td>608</td>
</tr>
<tr>
<td>АСТ, МЕ/л</td>
<td>76 36</td>
<td>50/ 3</td>
<td>11</td>
<td>26</td>
<td>17</td>
<td>50/ 3</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>АЛТ, МЕ/л</td>
<td>20 21</td>
<td>32/ 2</td>
<td>18</td>
<td>15</td>
<td>16</td>
<td>32/ 6</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГГТП</td>
<td></td>
<td>36</td>
<td>403/</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ед/л</td>
<td>2</td>
<td>353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td>16,</td>
<td>6</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Билир общ., мкмоль/л</td>
<td></td>
<td>27</td>
<td>27,8</td>
<td>30,5</td>
<td>-15,1</td>
<td>29</td>
<td>6</td>
<td>27</td>
<td></td>
<td>16,</td>
<td>6</td>
</tr>
<tr>
<td>Билир пр., мкмоль/л</td>
<td></td>
<td>10,1</td>
<td>5,6</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Холестерин, ммоль/л</td>
<td>6,5</td>
<td>3,9</td>
<td>3,2</td>
<td>3,6</td>
<td>3</td>
<td>3,1</td>
<td>3,66</td>
<td>3,2</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Триглицериды, мкмоль/л</td>
<td>1,5</td>
<td>0,61</td>
<td>0,8</td>
<td>0,5</td>
<td>0,8</td>
<td>0,91</td>
<td>0,78</td>
<td>1,0</td>
<td>8</td>
<td>1,9</td>
<td>0,6</td>
</tr>
<tr>
<td>ХС ЛПО НП, ммоль/л</td>
<td></td>
<td>0,28</td>
<td>0,4</td>
<td>0,2</td>
<td>0,4</td>
<td>0,41</td>
<td>0,35</td>
<td>0,4</td>
<td>9</td>
<td>0,8</td>
<td>6</td>
</tr>
</tbody>
</table>

ЭАМ 24.11.05 23 мг/л (ИФА), отношение альбумин/креатинин 56,8 мг/г, ЭАМ 39 мг/сут (ИТДА).

Анализ мочи 13.04.07 белок количественно-0,7 г/л; 12.04.10; 23.11.11; 05.07.12; 03.11.12; 04.11.12; 23.05.13; 20.06.14; 30.09.14-0 г/л

Гликемический профиль 23.11.11: глюкоза 5,1-5,9-6,4-6,8 ммоль/л 24.11.05 кальций 2,42, фосфор 1,22.
06.11.13NT-proBNP-5840 нг/л, 11.11.13NT-proBNP-4400 нг/л.
07.04.10 лпвп-холестерин-1.04 мМоль/л, ачтв-40.3 сек, д-димеры-1530 нг/мл, хлпн низкой плотности-2.58 ммоль/л.
02.11.12 лпвп-холестерин-1.44 ммоль/л, хлпн низкой плотности-1.16 ммоль/л, тропонин-0.02 мкг/л.
20.06.14 тропонин-0.025 мкг/л.
30.11.11 гликогемоглобин A1C-6.1%.
05.07.12 железо-7.3 мкмоль/л.
07.04.10; 23.11.11; 05.07.12; 2.11.12; 11.01.13; 23.05.13; 06.11.13; 30.09.14: антитела к ВИЧ, HCV, HBs не обнаружены.
Коагулограмма 23.11.11: протромбин по квику в %-65.6 %, фибриноген-2.13 г/л, мно-1.3, тромбиновое время-15.8 сек, ачтв-36 сек.
ЭКГ 1.11.12: фибрилляция предсердий, ЧСС 42 в мин. QRS= 190 мсек, QT/QTc= 570/554 мсек. желудочковая экстрасистолия.
15.11.12 ЭКГ: униполярная стимуляция желудочков в режиме VVI на фонефибрилляции предсердий, ЧСС 72 в мин.
23.05.13 ЭКГ: ритм ЭКС, одиночная ЖЭС, ЧСС 64 в мин. QRS= 216 мсек, QT/QTc= 566/583 мсек.
При ЭХОкт в начале наблюдения аорта 4,42см, уплотнена, с кальцинатами, расширена в прикорневом отделе. Кальциноз створок АК. Кальциноз кольца, склероз створок МК. ИММ ЛЖ 177,3 г/м2. Гипокинез базального и срединного сегментов передней и передне-перегородочной областей. Систолическая дисфункция ЛЖ. Легочная гипертензия. Дилатация ствола легочной артерии (2,3 см), регургитация на клапане ЛА II степени. УИ 23,4 мл/м2, СИ 2,72 л/мин/м2. Динамика различных показателей ЭХОкт за время наблюдения представлена в таблице 5.3.

Таблица 5.3. Динамика различных показателей ЭХОкт больного Ш.И.Н.

<table>
<thead>
<tr>
<th>Показа-</th>
<th>24.11.0</th>
<th>19.01.1</th>
<th>29.11.1</th>
<th>10.07.1</th>
<th>12.11.1</th>
<th>06.11.1</th>
<th>26.06.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Место</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ЛП, см</td>
<td>5,04</td>
<td>5,1*8,1 110 мл</td>
<td>5,62</td>
<td>5,1</td>
<td>5,4</td>
<td>5,3</td>
<td>5,3</td>
</tr>
<tr>
<td>ПП, см</td>
<td>4,9*6,9 105 мл</td>
<td></td>
<td>142</td>
<td>131</td>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>КДР пж, см</td>
<td>3,55</td>
<td>3,25</td>
<td>3,9</td>
<td>3,9</td>
<td>3,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тмжп, см</td>
<td>1,37</td>
<td>1,35</td>
<td>1,18</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>КДРЛЖ, см</td>
<td>5,73</td>
<td>5,48</td>
<td>5,5</td>
<td></td>
<td>5,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тэс, см</td>
<td>0,93</td>
<td>0,95</td>
<td>1,08</td>
<td>1,15</td>
<td>1,1</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>КДО ЛЖлж, мл</td>
<td>117,1</td>
<td>130</td>
<td>165</td>
<td>196</td>
<td>198</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>ФВ ЛЖ, %</td>
<td>18,9</td>
<td>32</td>
<td>45</td>
<td>42</td>
<td>34</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>АР, степень</td>
<td>II</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>МР, степень</td>
<td>II</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>ТР, степень</td>
<td>III</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>СДЛА, мм рт.ст.</td>
<td>60</td>
<td>61</td>
<td>71</td>
<td>59</td>
<td>54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

УЗИ почек, надпочечников и забрюшинного пространства 24.11.05; 28.11.11; 23.05.13: ЛЕВАЯ ПОЧКА. Форма - обычная. Конту ровный, четкий. Размеры - нормальные 112*52мм. Толщина паренхимы - 15мм нормальная. Структура паренхимы - неоднородная диффузно,очагово-анэхогенное обр-ние ср/сегменте 9*8мм. Почечный синус: Дилатация ЧЛС - чашечки 8мм. Конкроменты - визуализируются микро-
литы до 3 мм. ПРАВАЯ ПОЧКА - нефроптоз на 64 мм. Форма - обычная. Контуру - ровный, четкий. Размеры - нормальные 100*49 мм. Толщина паренхимы - 16 мм нормальная. Структура паренхимы неоднородная диффузно, очагово-анэхогенные обр-ния ср/сегменте 15*14 мм, 14*13 мм. Почечный синус: Дилатация ЧЛС - чашечки 8 мм. Конкременты - визуализируются микролиты до 3 мм. При осмотре надпочечники не визуализируются.

ЗАКЛЮЧЕНИЕ: Нефроптоз правой почки. Кисты, микролиты, каликоэкстазия, диффузные изменения паренхимы обеих почек.

ДСПА 24.11.05: Объемный кровоток в основном стволе правой почечной артерии: 289,8 мл/мин; в основном стволе левой почечной артерии – 218,7 мл/мин.

ной полости. Диффузные изменения печени, поджелудочной железы. Деформация желчного пузыря. В правой плевральной полости визуализируется 2000 мл жидкости.

КОРОНАРГРАФИЯ 10.07.12: Тип коронарного кровоснабжения: правый. ЛЕВАЯ КОРОНАРНАЯ АРТЕРИЯ (ЛКА): контуры ровные, контрастирование гомогенное. Передняя межжелудочковая ветвь (ПМЖВ): стеноз 60% в проксимальной трети с переходом на устье ДВ, дистальное артерия проходима, стеноз 50% в дистальной трети. Диагональная ветвь (ДВ): стеноз 70% в устье артерии, дистальное артерия проходима, без значимого стенозирования. Огибающая ветвь (ОВ): контуры неровные, стеноз 80-90% в средней трети, дистальное артерия с ровными контурами. ПРАВАЯ КОРОНАРНАЯ АРТЕРИЯ (ПКА): контуры ровные, контрастирование гомогенное. ЗАКЛЮЧЕНИЕ: стенотическое поражение коронарных артерий.

06.11.2012 проведена операция Постоянная эндокардиальная стимуляция Altrua 60 SR. Желудочковый эндокардиальный электрод (пассивная фиксация) (Boston Scientific 4457 58 cm, SN 725168). По желудочковому каналу: ПС - 0,5В, R-волна > 19 мВ, сопротивление 630 Ом. ЭКС-Altrua 60 SR (Boston Scientific, SN 174428). ЭКС в режиме VVI с базовой частотой 60 имп/мин. Контроль ЭКС от 10.01.13: ПЭКС режим VVI, с частотой 60 имп/мин. Желудочковый электрод: тип биполярный, амплитуда 1.5 В, длительность импульса 0.4 мс, порог стимуляции 0.6 В, сопротивление электрода 350 Ом.

02.2013 ХМ ЭКГ: Основной ритм мерцание предсердий, ЧСС max.157 в мин., min.67 в мин., cr.88 в мин., за время мониторирования зарегистрированы эктопические ритмы в виде: 1920 навязанных желудочковых комплексов, 1472 сливных желудочковых комплексов, 24959 ЖЭС, эпизоды бигемении и куплеты. При мониторировании не зарегистрировано диагностически значимое снижение сегмента ST.

26.06.14 ХМ ЭКГ: За время мониторирования зарегистрировалась
фибрилляция предсердий, эпизоды ритма ЭКС (VVI), частая желудочковая экстраксиолия с ЧСС 63-78-98 в мин. Всего за сутки выявлено 21000 желудочковых экстраксиол, в т.ч. парные - 44, триплеты 27. Пауз длительностью более 2 сек нет.

Консультация окулиста: OU атеросклероз сосудов сетчатки. Начальная кортикальная катаракта.

Таким образом, представлен клинический случай тяжелой ХСН ишемического генеза с развитием вторичной дилатации и систолической дисфункции миокарда левого желудочка, постепенным развитием тяжелого поражения почек до развития терминальной хронической почечной недостаточности. Тщательное наблюдение в течение 10 лет и подбор лекарственное терапии позволили пациенту дожить до возраста 77 лет. При большей приверженности к предлагаемым методам ведения пациенту, возможно, удалось бы избежать быстрого прогрессирования поражения почек и развития терминальной ХПН.

Больной З.В.В.
Больной З.В.В., 78 лет, в течение 15 лет страдал АГ с АД мах до 180/100 мм рт ст., более 5 лет - постоянная форма фибрилизации предсердий. В 2012 году инфаркт миокарда, осложненный синдромом тахи-бради, установлен ПЭКС, выявлена почечная недостаточность, неоднократные сеансы гемодиализа. В 2013 году диагностирован сахарный диабет 2 типа, рекомендована диетотерапия, на фоне чего – целевые уровни гликемии.

В течение последующих лет неоднократные госпитализации в связи с декомпенсацией ХСН, предыдущая в августе 2014 года, во время которой уровень креатинина сыворотки крови повышался до 315мкмоль/л (СКФ MDRD 15,3 мл/мин/1,73м²). После выписки принимал фуросемид 120 мг, дигоксин 0,125 мг в сутки, от другой рекомендованной терапии самостоятельно отказался.

В сентябре 2014 года упал с высоты собственного роста, после чего почувствовал резкую боль в области правого тазобедренного сустава, нарушение опорной способности правой ноги. Был госпитализирован, при рентгенологическом исследовании был подтвержден закрытый субкапитальный перелом шейки правой бедренной кости со смещением.

16.11.14 госпитализирован бригадой СМП в связи с декомпенсацией ХСН с жалобами на одышку в покое, усиливающуюся в положении лежа и при минимальной физической нагрузке, отеки нижних конечностей, выраженную слабость. При поступлении состояние больного тяжелое, отек кожи стоп, голеней, бедер, мошонки, лимфорреея. Рост 176 см, вес 92 кг, ИМТ 29,7кг/м². В легких дыхание жесткое, ослабленное в нижних отделах с обеих сторон, там же – влажные незвонкие мелкопузырчатые хрипы. Частота дыхательных движений в покое 24 в мин. Расширение границ относительной тупости сердца влево. Тонь сердца приглушенны, аритмичны, ЧСС 96 уд/мин. АД 140/80мм рт. ст. Живот увеличен в объеме за счет отека ПЖК, асцита, мягкий, безболезненный во всех отделах. Печень увеличена, умеренно болезненная при пальпации, выступает на 4см из-под ре-
берной дуги. Симптом поколачивания отрицательный с обеих сторон. Мочеиспускание учащенное, малыми порциями.

СКФ по формуле Кокрофта-Голта 18,7 мл/мин, MDRD1 - 19,0 мл/мин/1,73м2, MDRD2 – 21,9 мл/мин/1,73м2, CKD-EPI - 19,2 мл/мин/1,73м2.

Гликемический профиль: 5,6-6,9-8,8-6,8 ммоль/л; 4,3-5,2-6,0-6,3 ммоль/л и 4,6-5,7-6,3-7,2 ммоль/л.

ЭКГ: ритм ЭКС, ЧСС 100 в мин.

При Холтеровском мониторировании 23.11.14 ЭКГ основной ритм ПЭКС. Средняя ЧСС 68 уд/мин, минимальная 60 уд/мин, макс 85 уд/мин. Пауз нет. Желудочковых экстрасистол 1669, 14 куплетов. 1 пробежка желудочковой тахикардии из 4 комплексов в 03:39.

По данным рентгенографии органов грудной клетки - левосторонний гидроторакс, признаки легочной гипертензии, застоя в легких.

По данным ЭХОКГ, определялась выраженная гипертрофия миокарда левого желудочка с толщиной задней стенки 1,71см, межжелудочковой
перегородки 1,65см. Дилатация обоих предсердий (ЛП 4,85х7,05 см, объем ЛП 110,4мл; ПП 6,19х7,44см, объем ПП 188,4 мл). Конечный диастолический размер и объем левого желудочка составили 5,98 см и 210,4 мл соответственно. Конечный систолический объем левого желудочка 126,4 мл. Диффузный гипокинез миокарда левого желудочка с элементами акинеза и дискинеза в области МЖП, верхушки. Значительное снижение глобальной сократимости, ФВ левого желудочка 35,1%. Конечный диастолический размер на уровне основания правого желудочка 5,24 см, на уровне его середины – 3,89 см, длина правого желудочка - 6,35 см. Кальциноэ стенки аорты, кальциноэ митрального 2 балла, аортального клапанов 2 балла. Митральная регургитация II степени, трикуспидальная регургитация III степени. СДЛА 70 мм рт. ст.. СИ 1,255 л/мин/м2, УИ 19,3 мл/м2. Умеренное количество жидкости в полости перикарда.

При УЗИ почек - признаки нефросклероза: Правая 8,27х3,44х3,84 см, толщина паренхимы уменьшена до 1,22 см и 1,0 см. Левая почка 8,24х3,78х4,41 см, толщина паренхимы уменьшена 0,94 см и 1,07 см.

Риск переломов любой локализации по модели FRAX составил 15, риск перелома шейки бедра - 9,3.

За время госпитализации больному была оттитрована доза принимаемых препаратов, назначен бисопролол в дозе 7,5мг в сутки, фозиноприл 5мг в сутки, подобрана комбинация мочегонных препаратов (торасемид 10 мг/сутки + фуросемид 60 мг/сутки) с достижением положительного диуреза, целевых значений АД и ЧСС, без нарастания концентрации креатинина и калия в крови. Снижение веса за время госпитализации составило 7 кг, достигнута компенсация ХСН со значительным регрессом клинических проявлений. Сохранилось ограничение физической активности в связи с переломом шейки правого бедра. Учитывая наличие тяжелой дисфункции почек и невозможность амбулаторного контроля МНО у пациента с ХСН и постоянной формой фибрилляции предсердий, от назначения пероральных антикоагулянтов решено воздержаться.

Данный клинический случай демонстрирует развитие ХБП 4 стадии у пациента без первичной почечной патологии с длительным анамнезом АГ, перенесенным ИМ, ХСН и сахарного диабета 2 типа и является проявлением 2 типа кардиоренального синдрома. Перелом шейки бедра, повидимому, обусловлен развитием поражения костной системы (снижением МПК и развитием остеопороза, или нарушением качества костной ткани без остеопороза, или обеими причинами одновременно) на фоне длительно существующего кардиоренального синдрома. Тяжелая инвалидизация с невозможностью самообслуживания, резкое снижение качества жизни, плохая комплаентность привели к быстрому развитию летального исхода у описанного пациента. Из исследованных факторов риска неблагоприятного прогноза у больного З.В.В. были – высокий (IV) функциональный класс ХСН, систолическая дисфункция миокарда ЛЖ (ФВ 35,1%), повышение уровня креатинина в сыворотке крови, снижение СКФ, гиперурикемия, наличие протеинурии, высокий риск переломов по шкале FRAX, гипер-
фосфатемия. Этот клинический пример подтверждает необходимость тщательного внимания к проблеме поражения почек, костной системы, в т.ч. переломов костей, у больных с ХСН и их профилактики и своевременной коррекции.

Больной Ш.С.А.

В начале наблюдения рост 176 см, вес 90 кг, ИМТ 29,1 кг/м2. На верхних веках ксантелазмы. Влажность кожных покровов нормальная. Лимфоузлы не увеличены. Периферические отеки: стоп, голеней до в/3. Варикозное расширение вен н/к. Костно-мышечный аппарат - деформация и ограничение подвижности левого голеностопного сустава. Дыхание жесткое, ослаблено в нижних отделах с обеих сторон, там же небольшое количество влажных незвонких мелкопузырчатых хрипов. Тоны сердца приглушенны. Границы сердца расширены лево. ЧСС (в мин.) 90. Вены шее не изменены. Акцент второго тона на аорте. Ритм правильный. Дефицита пульса нет. Пульс на периферических артериях определяется. АД - 105/75 Д мм рт. ст. АД-110/75 С мм рт. ст. Живот обычной формы. Свободная жидкость в брюшной полости не определяется. Печень увеличена +7 см. Сумма баллов по ШОКС 13.11.09 и 15.12.10 - 11 баллов. Сумма баллов Кафедрального опросника 13.11.09 – 32 балла; 15.12.10 - 34 балла.

Динамика лабораторных показателей крови больного Ш. представлена в таблице 5.4.

Таблица 5.4. Динамика лабораторных показателей больного Ш.С.А.

<table>
<thead>
<tr>
<th></th>
<th>02.11.</th>
<th>13.11.</th>
<th>11.12.</th>
<th>16.12.</th>
<th>26.10.</th>
<th>27.10.</th>
<th>29.10.11</th>
</tr>
</thead>
</table>

419
<table>
<thead>
<tr>
<th></th>
<th>09</th>
<th>09</th>
<th>09</th>
<th>09</th>
<th>11</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гемоглобин, г/л</td>
<td>140</td>
<td>148</td>
<td>168</td>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Глюкоза, ммоль/л</td>
<td>6,1</td>
<td>5,3</td>
<td>5,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Общий белок, г/л</td>
<td>64</td>
<td>70</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Альбумин, г/л</td>
<td>30,2</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мочевина, моль/л</td>
<td>13,3</td>
<td>10</td>
<td>7,8</td>
<td>11,6</td>
<td>11,8</td>
<td>11,4</td>
</tr>
<tr>
<td>Креатинин, мкмоль/л</td>
<td>141</td>
<td>128</td>
<td>80</td>
<td>128</td>
<td>125</td>
<td>164</td>
</tr>
<tr>
<td>СКФ MDRDs</td>
<td>46</td>
<td>52</td>
<td>89</td>
<td>52</td>
<td>53</td>
<td>39</td>
</tr>
<tr>
<td>СКФ SKD-EPI</td>
<td>49,0</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Мочевая кислота, мкмоль/л</td>
<td>635</td>
<td>418</td>
<td>756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЩФ, МЕ/л</td>
<td>331</td>
<td></td>
<td>275</td>
<td>282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ЛДГ, Ед/л</td>
<td>1885</td>
<td>531</td>
<td>432</td>
<td>550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>АСТ, МЕ/л</td>
<td>611</td>
<td>17</td>
<td>23</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>АЛТ, МЕ/л</td>
<td>374</td>
<td>20</td>
<td>21</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ГГТП, Ед/л</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Билир общ, мкмоль/л</td>
<td>35</td>
<td></td>
<td>12,1</td>
<td>32,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Билир пр, мкмоль/л</td>
<td>17</td>
<td></td>
<td>3,3</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Протромбин,%</td>
<td>33</td>
<td>65,6</td>
<td>70,8</td>
<td>46,5</td>
<td>55,8</td>
<td></td>
</tr>
<tr>
<td>ТВ,c</td>
<td>18</td>
<td>22,8</td>
<td>23,7</td>
<td>16,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>АЧТВ, c</td>
<td>36</td>
<td>43,3</td>
<td>46,5</td>
<td>40,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>МНО</td>
<td>2,08</td>
<td>1,28</td>
<td>1,22</td>
<td>1,66</td>
<td>1,63</td>
<td></td>
</tr>
<tr>
<td>Холестерин, ммоль/л</td>
<td>5,4</td>
<td>6,4</td>
<td>6,1</td>
<td>4,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Триглицериды, мкмоль/л</td>
<td>0,62</td>
<td>1,31</td>
<td>1,18</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ХС ЛПОНП, моль/л</td>
<td>0,28</td>
<td>0,6</td>
<td>0,54</td>
<td>0,23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Многократно 02.11.09; 16.12.10, 25.10.11: антитела к ВИЧ, НСВ, HBS антигену не обнаружены.

13.11.09 Биохимия крови: кальций-2 ммоль/л, фосфор-2.05
мМоль/л, магний-0,96 мМоль/л, интактный ПТГ 56,24 пг/мл; 25ОН-витамин D 73,5 нмоль/л, кальцитонин 6,5 пг/мл, С-телопептид 0,35 нг/мл, Остеокальцин 17,8 нг/мл, Остеопротеогерин 464 пг/мл, NT-ProBNP 120,2 фмоль/мл, лпвп-холестерин-0,78 мМоль/л (0,83~1,87), натрий-137 мМоль/л (130,5~156,6), калий-4,5 мМоль/л (3,4~5,3), хлориды-94 мМоль/л (95~110), д-димеры-269 нг/мл (63~246), хлпп низкой плотности-4,34 ммоль/л (0~3,5), хлпп очень низкой плотности-0,28 ммоль/л (0~1),

20.12.10: ЭАМ 14,7 мг/сут.

При ЭХОкг в начале наблюдения (Рисунок 5.1) аорта 3,88 см, уплотнена.Створки АК тонкие, раскрытие их полное, не ограниченно, включения кальция отсутствуют.Диффузный гипокинез миокарда с участками дискинеза в области верхушки, апикального отделаМЖП, базального, среднего отдела задней стенки. Систолическая дисфункция ЛЖ. Легочная гипертензия.Динамика различных показателей ЭХОкг за время наблюдения представлена в таблице 5.5.

Рисунок 5.1.

Таблица 5.5. Динамика различных показателей ЭХОкг больного Ш.С.А.

<table>
<thead>
<tr>
<th>Показатель</th>
<th>13.11.09</th>
<th>17.12.10</th>
<th>26.10.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ЛП, см</td>
<td>6,78</td>
<td>7,72</td>
<td>7,97</td>
</tr>
<tr>
<td>ПП, см</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КДР пж, см</td>
<td>5,27</td>
<td>4,24</td>
<td>4,95</td>
</tr>
<tr>
<td>Тмжп, см</td>
<td>0,94</td>
<td>1,18</td>
<td>0,95</td>
</tr>
<tr>
<td>КДРЛЖ, см</td>
<td>8,79</td>
<td>8,84</td>
<td>8,54</td>
</tr>
<tr>
<td>Тэс, см</td>
<td>1,19</td>
<td>1,34</td>
<td>1,08</td>
</tr>
<tr>
<td>ИММ/BSA, г/м²</td>
<td>245,2</td>
<td>326,3</td>
<td></td>
</tr>
<tr>
<td>КДОЛЖлж, мл</td>
<td>391,2</td>
<td>441,3</td>
<td>348</td>
</tr>
<tr>
<td>ФВЛЖ, %</td>
<td>25,3</td>
<td>29</td>
<td>12-17</td>
</tr>
<tr>
<td>АР, степень</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>МР, степень</td>
<td>III-IV</td>
<td>IV</td>
<td>III</td>
</tr>
<tr>
<td>TR, степень</td>
<td>III-IV</td>
<td>III</td>
<td>III</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>СДЛА, мм рт.ст.</td>
<td>52</td>
<td>56,2</td>
<td>55</td>
</tr>
</tbody>
</table>

- 17.12.10 УЗИ органов брюш.полости без существенной динамики по сравнению с УЗИ от 03.11.09

ДЕНСИТОМЕТРИЯ: Остеопороза и остеопении не выявлено.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9</td>
<td>0,33</td>
<td>1,2</td>
<td>0,32</td>
<td>0,92</td>
<td>1,14</td>
<td>1,3</td>
<td>1,24</td>
<td>1,3</td>
<td>1,3</td>
<td>1,2</td>
<td>0,92</td>
<td>0,05</td>
<td>0,08</td>
<td>0,09</td>
<td>0,05</td>
<td>0,02</td>
<td>0,03</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
</tbody>
</table>

FRAX: общий риск 4, риск перелома шейки бедра – 0,1.

Консультация окулиста: ОИ- гипертоническая ангиопатия сетчатки.

Лекарственная терапия: Лозап 25 мг, Конкор 5 мг, Верошпирон 25 мг, Дигоксин 0,025 мг, ТромбоАСС 50 мг, Аллопуринол 100 мг в сутки под
контролем мочевой кислоты крови, Урегит 50 мг х 2 р/д, Диакарб 250 мг х 2 р/д (4 дня прием, 4 дня пропустить - при адекватном диурезе; при отрицательном диурезе - ежедневный прием до восстановления диуреза). С 12.2010 проведена коррекция диуретикотерапии, назначены фуросемид 10 мг утром, урегит 50 мг утром, диакарб 250 мг 3 раза в неделю, с 10/11 - урегит 50 мг/сутки. На фоне лечения отмечалось снижение АД до 80/50 мм рт. ст., в связи с чем лозап был заменен на престариум 1,25 мг утром р/сут.

В связи с тенденцией к гипотензии больной с 12.2010 – больной отказался от приема АРА и ингибиторов АПФ. Учитывая наличие ХСН и постоянной формы ФП с высоким риском тромбоэмболических осложнений, Тромбо-АСС с 12.2010 отменен, назначен варфарин 2,5 мг в сутки, который больной принимал в течение 10 месяцев, 10.2011 – носовое кровотечение, отмена варфарина на 5 дней, затем титрация дозы под контролем МНО до 3,75 мг/сут.

Во время последней госпитализации у пациента развился эпизод гипотонии, нараставшая одышка, кратковременного потери сознания, потребовавший перевода пациента в отделение ОРИТ. Симптоматика регрессировала на фоне инфузии кордарона и допамина. При УЗАС глубоких вен н/к- тромбоза не выявлено. Через 1 сутки после стабилизации состояния при ХМ ЭКГ основной ритм фибрилляция предсердий со средней ЧСС 80 (мин 49, макс 115 в минуту), 13174 желудочковых экстрасистолы за сутки, из них 542 куплета, 63 групповых, 17 пробежек желудочковой тахикардии (макс. период 6 сек в ночное время, макс. ЧСС 189 в мин), 259 комплексов с аберрацией проведения. Пауз и диагностики значимых диспозиций сегмента ST не зарегистрировано.

Выписан 9.11.11 с улучшением, рекомендована консультация кардиохирурга для решения вопроса об установке кардиовертера-дефибриллятора и проведении ресинхронизирующей терапии. 10.11.11. внезапно скончался.

Представлен клинический случай тяжелой ХСН ишемического гене-
за с развитием вторичной дилатации и выраженной систолической дисфункции миокарда левого желудочка. В начале наблюдения у пациента отмечался острый ишемический гепатит с развитием печеночно-клеточной недостаточности (гипопротеинемии, гипокоагуляции), цитолитического и холестатического синдрома. На фоне компенсации ХСН отмечена нормализация признаков поражения печени. На фоне эпизодов гипотонии – рецидив гепатопатии. В связи с выявлением пробегов ЖТ пациенту планировалась установка кардиовертера-дефибриллятора, однако во время подготовки к этому вмешательству пациент внезапно скончался в возрасте 51 года. Из исследованных факторов риска неблагоприятного прогноза у больного Ш.С.А. были – высокий (III) функциональный класс ХСН, систолическая дисфункция миокарда ЛЖ (ФВ 12-17%), наличие ХБП 3а, гиперурикемия, гиперфосфатемия. Это подтверждает необходимость своевременной диагностики и коррекции этих состояний у больных с ХСН.
БЛАГОДАРНОСТИ

Хотелось бы выразить огромную благодарность научным консультантам академику РАН, профессору кафедры госпитальной терапии №2 ГБОУ ВПО РНИМУ им Н.И.Пирогова д.м.н. Сторожакову Г.И. и профессору кафедры госпитальной терапии №2 ГБОУ ВПО РНИМУ им Н.И.Пирогова д.м.н. Гендлину Г.Е., всему коллективу кафедры и сотрудникам ГБУЗ ГКБ №12 г. Москвы, особенно терапевтических и кардиологических отделений, приемного отделения и отделения лабораторной и функциональной диагностики, за поддержку и помощь на всех этапах выполнения работы, ассистенту кафедры госпитальной терапии №3 ГБОУ ВПО РНИМУ им Н.И.Пирогова к.м.н. Волынкиной В.М. за определение экскреции альбумина с мочой и NT-proBNP методом ИФА, ассистенту кафедры госпитальной терапии №3 ГБОУ ВПО РНИМУ им Н.И.Пирогова Светлакову В.И. за выполнение бодиплетизмографии, со-исполнителю грантов для государственной поддержки молодых российских ученых Гущиной В.М., а также к.м.н. Борисову С.Н., Ганиевой И.И., Комиссаровой М.С., Солтису С.Ю., Стратий О. и моей семье.

СПИСОК ЛИТЕРАТУРЫ

5. Беленков, Ю.Н., Фомин, И.В., Мареев, В.Ю., Распространённость хронической сердечной недостаточности в Европейской части РФ
6. Белоусов, Ю.Б., Моисеев, В.С., Лепахин, В.К., Клиническая фармакология и фармакотерапия. 2000, Универсум Паблишинг: Москва.
7. Беляева, О.Д., Калликреин-кининовая система и натрийуретическая функция почек у больных с сердечной недостаточностью при терапии лозартаном и периндоприлом. Автореферат на соискание ученой степени кандидата медицинских наук. 1999: Санкт-Петербург. р. 16.
14. Бритов, А.Н., Поздняков, Ю.М., Национальные рекомендации по кардiovаскулярной профилактике. // Кардиоваскулярная терапия и профилактика. Приложение 2, 2011. Т. 6. № 10. С. 1-64.
22. Земченков, А.Ю., Томилина, Н.А., "К/ДОКИ " обращается к истокам хронической почечной недостаточности (О новом разделе Рекомендаций K/DOQI по диагностике, классификации и оценке тяжести хронических заболеваний почек). // Нефрология и диализ, 2004. Т. 6. № 3. С. 204-221.
23. Каменева, М.Ю., Оценка эффективности различных способов определения нормальных значений параметров механики дыхания при диагностике рестриктивного типа вентиляционных нарушений. // Российский семейный врач, 2014. Т. 18. № 2. С. 24-29.
27. Кинзерская, М.Л., Клинико-функциональные взаимосвязи ремоделирования миокарда со структуро-функциональными характеристиками печени и печеночного кровотока при хронической сердечной недостаточности. 2008: Екатеринбург. р. 250.
30. Конечная, Е.Я., Нанчиесева, М.Л., Гладкая, А.А., Значение показателей внутрипочечной гемодинамики у пациентов с эссенциальной гипертонией. // Ультразвуковая и функциональная диагностика, 2001 № 2. С. 83-89.
33. Ларипа, В.Н., Клиническое значение остеопороза при хронической сердечной недостаточности. // Российский кардиологический журнал, 2013. Т. 100. № 2. С. 98-104.
40. Мелехов, А.В., Состояние артериального сосудистого русла, микроциркуляции и биомеханики дыхания у больных с хронической сердечной недостаточностью. Диссертация на соискание ученой степени кандидата медицинских наук. 2005: Москва. р. 123.
42. Митьков, В.В., Клиническое руководство по ультразвуковой диагностике. 1998, Видар: Москва.
43. Моисеев, В.С., Мухин, Н.А., Кобалава, Ж.Д. et al., Функциональное состояние почек и прогнозирование сердечно-сосудистого риска. // Кардиоваскулярная терапия и профилактика, 2008. Т. 7(6).
45. Назаренко, Г.И., Хитрова, А.Н., Краснова, Т.В., Допплерографические исследования в уронефрологии. Современные медицинские технологии. 2002, Москва. р. С. 152.
49. Ольхова, Е.Б., Зарубина, С.А., Быковский, В.А., Эхографическая оценка ренальной гемодинамики у детей разного возраста. // Ультразвуковая диагностика в акушерстве, гинекологии, педиатрии, 1999 № 3. С. 212-218.
50. Полещук, Л.А., Характеристика почечной гемодинамики у детей с заболеваниями почек (Обзор литературы). // Нефрология и диализ, 2006. Т. 8. № 3.
52. Ратнер, М.Я., Серов, В.В., Томилина, Н.А., Ренальные дисфункции. 1977, Москва: р. С. 296.
55. Резник, Е.В., Состояние почечной гемодинамики и функции почек у больных с хронической сердечной недостаточностью. Диссертация на соискание ученой степени кандидата медицинских наук. 2007: Москва. р. С. 161.
56. Резник, Е.В., Почки как орган-мишень при хронической сердечной недостаточности. 2011, Lamber. р. 188.

60. Резник, Е.В., Гендлин, Г.Е., Хрипун, А.И. et al., Функциональное состояние почек, экскреция альбумина с мочой и почечная гемодинамика у больных с хронической сердечной недостаточностью. // Нефрология и диализ, 2010. Т. 12. № 4. С. 275-286.

63. Серов, В.А., Шутов, А.М., Сучков, В.Н. et al., Прогностическое значение снижения функции почек у больных с хронической сердечной недостаточностью. // Нефрология и диализ, 2008. Т. 10. № 3-4.

64. Ситникова, М.Ю., Максимова, Т.А., Козлова, С.Н. et al., O взаимосвязи маркеров эндотелиальной дисфункции и почечной гемодинамики у больных сердечной недостаточностью и влияние на них длительной терапии периндоприлом. // Клиническая фармакология и терапия, 2001. Т. 10. № 1. С. 49-52.

66. Смирнов, А.В., Шилов, Е.М., Бобкова, И.Н. et al., НАЦИОНАЛЬНЫЕ РЕКОМЕНДАЦИИ ХРОНИЧЕСКАЯ БОЛЕЗНЬ ПОЧЕК: ОСНОВНЫЕ ПОЛОЖЕНИЯ, ОПРЕДЕЛЕНИЕ, ДИАГНОСТИКА, СКРИНИНГ, ПОДХОДЫ К ПРОФИЛАКТИКЕ И ЛЕЧЕНИЮ. // Материалы Национальной конференции по организации нефрологической помощи в РФ, 2011.

68. Спицина, Е.В., Якушина, Н.Ю., Чудакова, Д.А. et al., Ассоциация полиморфных маркеров Pro72Arg и С(-594)СС гена TR53 с диабетической полинейропатией при сахарном диабете типа 1 в

70. Сторожakov, Г.И., Гендлин, Г.Е., Резник, Е.В., Поражение почек у больных с хронической сердечной недостаточностью, // В кн.: Основные направления в лечении больных с хронической сердечной недостаточностью: руководство для врачей терапевтов, врачей общей практики, Сторожakov, Г.И., Гендлин, Г.Е. ред., Москва: Миклош, 2008. С. 137-149.

74. Сычева, Ю.А., Участие калликреин-кининовой системы почек в регуляции почечной ге-модинамики и вода-солевого обмена у больных с сердечной недостаточностью. Автореферат на соискание ученой степени кандидата медицинских наук. 1997: Санкт-Петербург. р. 16.

76. Терещенко, С.Н., Демидова, И.В., Почечная функция при хронической сердечной недостаточности у больных пожилого и старческого возраста. // Сердце, 2002. Т. 1. № 5. С. 251-256.

77. Тронина, О.А., Патология сердечно-сосудистой системы у больных с терминальной хронической почечной недостаточностью в различные сроки после пересадки почки. Автореферат на соискание ученой степени кандидата медицинских наук. 2005: Москва. р. 25.

79. Чазова, И.Е., Рекомендации экспертов Всероссийского научного общества кардиологов по диагностике и лечению метаболического синдрома. 2009, Всероссийское научное общество кардиологов: Москва. р. 32.
86. Эмануэль, В.Л., Лабораторная диагностика заболеваний почек. 2006, Триада: Санкт-Петербург.
87. Ярославцева, М.В., Ульянова, И.Н., Галстян, Г.Р., Система остеопротегерин (OPG) - лиганд рецептора-активатора ядерного фактора каппа-В (RANKL) при диабетической неироостеоартропатии и облитерирующим атеросклерозе артерий нижних конечностей. // Сахарный диабет, 2007 № 2. С. 24-27.
88. Ярославцева, М.В., Ульянова, И.Н., Галстян, Г.Р., Состояние системы остеопротегерин (OPG) - лиганд рецептора активатора ядерного фактора каппа-В (RANKL) у пациентов с диабетической остеоартропатией и медиакальцинозом артерий нижних конечностей. // Остеопороз и астеопатии, 2008. Т. 1. № 1. С. 9-14.
108. Agarwal, S.K., Heiss, G., Barr, R.G. et al., Airflow obstruction, lung function, and risk of incident heart failure: the Atherosclerosis Risk in

229. Chung, E.S., Packer, M., Lo, K.H. et al., Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive

296. Dries, D.L., Exner, D.V., Gersh, B.J. et al., Atrial fibrillation is associated with an increased risk for mortality and heart failure progression in

469. Isakova, T., Gutierrez, O.M., Smith, K. et al., Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast

614. Matsushita, K., Selvin, E., Bash, L.D. et al., *Risk implications of the new CKD Epidemiology Collaboration (CKD-EPI) equation compared with the MDRD Study equation for estimated GFR: the Atherosclerosis Risk in

626. McMurray, J.J., Adamopoulos, S., Anker, S.D. et al., ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in

717. Petersen, M., Andersen, J.T., Hjelvang, B.R. et al., *Association of beta-adrenergic receptor polymorphisms and mortality in carvedilol-treated
729. Pitt, B., Segal, R., Martinez, F.A. et al., Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of

743. Portale, A.A., Halloran, B.P., Morris, R.C., Jr., Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of

798. Sanderson, J.E., Young, R.P., Yu, C.M. et al., Lack of association between insertion/deletion polymorphism of the angiotensin-converting

839. Shrestha, K., Borowski, A.G., Troughton, R.W. et al., Renal dysfunction is a stronger determinant of systemic neutrophil gelatinase-associated...

933. von Haehling, S., Lainscak, M., Doehner, W. et al., *Diabetes mellitus, cachexia and obesity in heart failure: rationale and design of the Studies

956. Wong, K.K., Summers, K.M., Burstow, D.J. et al., *Angiotensin-converting enzyme and angiotensinogen genes in patterns of left

